Understanding the genetic basis of blueberry postharvest traits to define better breeding strategies.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Gonzalo Casorzo, Luis Felipe Ferrão, Paul Adunola, Estefania Tavares Flores, Camila Azevedo, Rodrigo Amadeu, Patricio R Munoz
{"title":"Understanding the genetic basis of blueberry postharvest traits to define better breeding strategies.","authors":"Gonzalo Casorzo, Luis Felipe Ferrão, Paul Adunola, Estefania Tavares Flores, Camila Azevedo, Rodrigo Amadeu, Patricio R Munoz","doi":"10.1093/g3journal/jkae163","DOIUrl":null,"url":null,"abstract":"<p><p>Blueberry (Vaccinium spp.) is among the most-consumed soft fruit and has been recognized as an important source of health-promoting compounds. Highly perishable and susceptible to rapid spoilage due to fruit softening and decay during postharvest storage, modern breeding programs are looking to maximize the quality and extend the market life of fresh blueberries. However, it is uncertain how genetically controlled postharvest quality traits are in blueberries. This study aimed to investigate the prediction ability and the genetic basis of the main fruit quality traits affected during blueberry postharvest to create breeding strategies for developing cultivars with an extended shelf life. To achieve this goal, we carried out target genotyping in a breeding population of 588 individuals and evaluated several fruit quality traits after 1 day, 1 week, 3 weeks, and 7 weeks of postharvest storage at 1°C. Using longitudinal genome-based methods, we estimated genetic parameters and predicted unobserved phenotypes. Our results showed large diversity, moderate heritability, and consistent predictive accuracies along the postharvest storage for most of the traits. Regarding the fruit quality, firmness showed the largest variation during postharvest storage, with a surprising number of genotypes maintaining or increasing their firmness, even after 7 weeks of cold storage. Our results suggest that we can effectively improve the blueberry postharvest quality through breeding and use genomic prediction to maximize the genetic gains in the long term. We also emphasize the potential of using longitudinal genomic prediction models to predict the fruit quality at extended postharvest periods by integrating known phenotypic data from harvest.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae163","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Blueberry (Vaccinium spp.) is among the most-consumed soft fruit and has been recognized as an important source of health-promoting compounds. Highly perishable and susceptible to rapid spoilage due to fruit softening and decay during postharvest storage, modern breeding programs are looking to maximize the quality and extend the market life of fresh blueberries. However, it is uncertain how genetically controlled postharvest quality traits are in blueberries. This study aimed to investigate the prediction ability and the genetic basis of the main fruit quality traits affected during blueberry postharvest to create breeding strategies for developing cultivars with an extended shelf life. To achieve this goal, we carried out target genotyping in a breeding population of 588 individuals and evaluated several fruit quality traits after 1 day, 1 week, 3 weeks, and 7 weeks of postharvest storage at 1°C. Using longitudinal genome-based methods, we estimated genetic parameters and predicted unobserved phenotypes. Our results showed large diversity, moderate heritability, and consistent predictive accuracies along the postharvest storage for most of the traits. Regarding the fruit quality, firmness showed the largest variation during postharvest storage, with a surprising number of genotypes maintaining or increasing their firmness, even after 7 weeks of cold storage. Our results suggest that we can effectively improve the blueberry postharvest quality through breeding and use genomic prediction to maximize the genetic gains in the long term. We also emphasize the potential of using longitudinal genomic prediction models to predict the fruit quality at extended postharvest periods by integrating known phenotypic data from harvest.

了解蓝莓采后性状的遗传基础,确定更好的育种策略。
蓝莓(越橘属)是消费量最大的软水果之一,被认为是促进健康化合物的重要来源。蓝莓极易变质,在采后贮藏期间容易因果实软化和腐烂而迅速变质,因此现代育种计划正在寻求最大限度地提高新鲜蓝莓的质量并延长其市场寿命。然而,目前还不确定蓝莓采后质量性状的遗传控制情况如何。本研究旨在调查蓝莓采后期间受影响的主要果实品质性状的预测能力和遗传基础,以制定育种策略,开发延长货架期的栽培品种。为了实现这一目标,我们在一个由 588 个个体组成的育种群体中进行了目标基因分型,并对采后在 1 °C下贮藏一天、一周、三周和七周后的几种果实品质性状进行了评估。利用基于基因组的纵向方法,我们估算了遗传参数并预测了未观察到的表型。我们的研究结果表明,大多数性状在采后贮藏期间具有较大的多样性、适度的遗传率和一致的预测准确性。在果实品质方面,果实硬度在采后贮藏期间的变化最大,即使在冷藏七周后,仍有数量惊人的基因型保持或提高了果实硬度。我们的研究结果表明,我们可以通过育种有效改善蓝莓采后品质,并利用基因组预测最大限度地提高长期遗传收益。我们还强调了使用纵向基因组预测模型的潜力,即通过整合采收时的已知表型数据来预测采后更长时间内的果实质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信