Enhanced L-theanine production through semi-rational design of γ-glutamylmethylamide synthetase from Methylovorus mays

IF 3.4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chao Fan , Jiakun Qi , Yunhan Cong , Chunzhi Zhang
{"title":"Enhanced L-theanine production through semi-rational design of γ-glutamylmethylamide synthetase from Methylovorus mays","authors":"Chao Fan ,&nbsp;Jiakun Qi ,&nbsp;Yunhan Cong ,&nbsp;Chunzhi Zhang","doi":"10.1016/j.enzmictec.2024.110481","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal instability of γ-glutamylmethylamide synthetase (GMAS) from <em>Methylovorus mays</em> has imposed limitations on its industrial applications, affecting both stability and activity at reaction temperatures. In this study, disulfide bridges were introduced through a combination of directed evolution and rational design to enhance GMAS stability. Among the variants that we generated, M12 exhibited a 1.46-fold improvement in relative enzyme activity and a 6.23-fold increase in half-life at 40℃ compared to the wild-type GMAS. Employing variant M12 under optimal conditions, we achieved the production of 645.7 mM (112.49 g/L) L-theanine with a productivity of 29.3 mM/h, from 800 mM substrate in an ATP regeneration system. Our strategy significantly enhances the biosynthesis efficiency of L-theanine by preserving the structural stability of the enzyme during the catalysis process.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"180 ","pages":"Article 110481"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000887","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal instability of γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays has imposed limitations on its industrial applications, affecting both stability and activity at reaction temperatures. In this study, disulfide bridges were introduced through a combination of directed evolution and rational design to enhance GMAS stability. Among the variants that we generated, M12 exhibited a 1.46-fold improvement in relative enzyme activity and a 6.23-fold increase in half-life at 40℃ compared to the wild-type GMAS. Employing variant M12 under optimal conditions, we achieved the production of 645.7 mM (112.49 g/L) L-theanine with a productivity of 29.3 mM/h, from 800 mM substrate in an ATP regeneration system. Our strategy significantly enhances the biosynthesis efficiency of L-theanine by preserving the structural stability of the enzyme during the catalysis process.

Abstract Image

通过对 Methylovorus mays 的 γ-谷氨酰甲酰胺合成酶进行半合理设计,提高 L-茶氨酸的产量。
来自Methylovorus mays的γ-谷氨酰甲酰胺合成酶(GMAS)的热不稳定性限制了其工业应用,影响了其在反应温度下的稳定性和活性。本研究通过定向进化和合理设计相结合的方法引入了二硫桥,以提高 GMAS 的稳定性。在我们生成的变体中,M12与野生型GMAS相比,相对酶活性提高了1.46倍,在40℃时的半衰期延长了6.23倍。在最佳条件下使用变体 M12,我们在 ATP 再生系统中以 29.3 mM/h 的生产率从 800 mM 底物生产出了 645.7 mM(112.49 g/L)L-茶氨酸。我们的策略在催化过程中保持了酶的结构稳定性,从而大大提高了 L-茶氨酸的生物合成效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzyme and Microbial Technology
Enzyme and Microbial Technology 生物-生物工程与应用微生物
CiteScore
7.60
自引率
5.90%
发文量
142
审稿时长
38 days
期刊介绍: Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells. We especially encourage submissions on: Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology New Biotechnological Approaches in Genomics, Proteomics and Metabolomics Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信