The impact of transmembrane peptides on lipid bilayer structure and mechanics: A study of the transmembrane domain of the influenza A virus M2 protein

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yasith Indigahawela Gamage, Yasinthara Wadumesthri, Humberto Rodríguez Gutiérrez, Dmitri V. Voronine, Jianjun Pan
{"title":"The impact of transmembrane peptides on lipid bilayer structure and mechanics: A study of the transmembrane domain of the influenza A virus M2 protein","authors":"Yasith Indigahawela Gamage,&nbsp;Yasinthara Wadumesthri,&nbsp;Humberto Rodríguez Gutiérrez,&nbsp;Dmitri V. Voronine,&nbsp;Jianjun Pan","doi":"10.1016/j.bbamem.2024.184373","DOIUrl":null,"url":null,"abstract":"<div><p>Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (K<sub>A</sub>). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (K<sub>A</sub>). The large decreases in bilayer elastic parameters (i.e., E and K<sub>A</sub>) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 7","pages":"Article 184373"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624001044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transmembrane peptides play important roles in many biological processes by interacting with lipid membranes. This study investigates how the transmembrane domain of the influenza A virus M2 protein, M2TM, affects the structure and mechanics of model lipid bilayers. Atomic force microscopy (AFM) imaging revealed small decreases in bilayer thickness with increasing peptide concentrations. AFM-based force spectroscopy experiments complemented by theoretical model analysis demonstrated significant decreases in bilayer's Young's modulus (E) and lateral area compressibility modulus (KA). This suggests that M2TM disrupts the cohesive interactions between neighboring lipid molecules, leading to a decrease in both the bilayer's resistance to indentation (E) and its ability to resist lateral compression/expansion (KA). The large decreases in bilayer elastic parameters (i.e., E and KA) contrast with small changes in bilayer thickness, implying that bilayer mechanics are not solely dictated by bilayer thickness in the presence of transmembrane peptides. The observed significant reduction in bilayer mechanical properties suggests a softening effect on the bilayer, potentially facilitating membrane curvature generation, a crucial step for M2-mediated viral budding. In parallel, our Raman spectroscopy revealed small but statistically significant changes in hydrocarbon chain vibrational dynamics, indicative of minor disordering in lipid chain conformation. Our findings provide useful insights into the complex interplay between transmembrane peptides and lipid bilayers, highlighting the significance of peptide-lipid interactions in modulating membrane structure, mechanics, and molecular dynamics.

Abstract Image

跨膜肽对脂质双分子层结构和力学的影响:对甲型流感病毒 M2 蛋白跨膜结构域的研究。
跨膜肽通过与脂膜相互作用,在许多生物过程中发挥着重要作用。本研究探讨了甲型流感病毒 M2 蛋白的跨膜结构域 M2TM 如何影响模型脂质双分子层的结构和力学。原子力显微镜(AFM)成像显示,随着肽浓度的增加,双层膜厚度会略有下降。基于原子力显微镜的力谱实验以及理论模型分析表明,双分子层的杨氏模量(E)和横向面积压缩模量(KA)显著下降。这表明 M2TM 破坏了相邻脂质分子之间的内聚相互作用,导致双分子层的抗压痕能力(E)和抗横向压缩/膨胀能力(KA)下降。双分子层弹性参数(即 E 和 KA)的大幅下降与双分子层厚度的微小变化形成鲜明对比,这意味着在存在跨膜肽的情况下,双分子层力学并不完全由双分子层厚度决定。观察到的双分子层力学性能的显著降低表明双分子层具有软化效应,可能会促进膜曲率的产生,而这是 M2- 介导的病毒出芽的关键步骤。与此同时,我们的拉曼光谱发现碳氢链振动动力学发生了微小但具有统计学意义的变化,表明脂链构象发生了轻微的紊乱。我们的研究结果为了解跨膜肽与脂质双分子层之间复杂的相互作用提供了有用的见解,突出了肽脂相互作用在调节膜结构、力学和分子动力学方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信