Sex differences in sympathetic transduction in black and white adults: implications for racial disparities in hypertension and cardiovascular disease risk.
Benjamin E Young, Claire E Kissell, Jennifer R Vranish, Brandi Y Stephens, Seth W Holwerda, Paul J Fadel
{"title":"Sex differences in sympathetic transduction in black and white adults: implications for racial disparities in hypertension and cardiovascular disease risk.","authors":"Benjamin E Young, Claire E Kissell, Jennifer R Vranish, Brandi Y Stephens, Seth W Holwerda, Paul J Fadel","doi":"10.1152/ajpheart.00337.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of hypertension in non-Hispanic black (BL) individuals is the greatest of any racial/ethnic group. Whereas women generally display lower rates of hypertension than men of the same background, BL women display a similar if not greater burden of hypertension compared with BL men. The risk for cardiovascular disease and related events is also highest in BL individuals. Given the importance of the sympathetic nervous system for the regulation of the cardiovascular system, a growing body of literature has investigated sympathetic function in BL and non-Hispanic white (WH) individuals. Here, we are focused on emerging evidence indicating that sympathetic function may be altered in BL individuals, with particular emphasis on the process by which bursts of muscle sympathetic nerve activity (MSNA) are transduced into vasoconstriction and increases in blood pressure (sympathetic vascular transduction). To synthesize this growing body of literature we discuss sex and race differences in <i>1</i>) sympathetic outflow, <i>2</i>) sympathetic vascular transduction, and <i>3</i>) adrenergic receptor sensitivity. Sex differences are discussed foremost, to set the stage for new data indicating a sex dimorphism in sympathetic regulation in BL individuals. Specifically, we highlight evidence for a potential neurogenic phenotype including greater adiposity-independent sympathetic outflow and enhanced sympathetic vascular transduction in BL men that is not observed in BL women. The implications of these findings for the greater hypertension and cardiovascular disease risk in BL adults are discussed along with areas that require further investigation.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H672-H680"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00337.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The prevalence of hypertension in non-Hispanic black (BL) individuals is the greatest of any racial/ethnic group. Whereas women generally display lower rates of hypertension than men of the same background, BL women display a similar if not greater burden of hypertension compared with BL men. The risk for cardiovascular disease and related events is also highest in BL individuals. Given the importance of the sympathetic nervous system for the regulation of the cardiovascular system, a growing body of literature has investigated sympathetic function in BL and non-Hispanic white (WH) individuals. Here, we are focused on emerging evidence indicating that sympathetic function may be altered in BL individuals, with particular emphasis on the process by which bursts of muscle sympathetic nerve activity (MSNA) are transduced into vasoconstriction and increases in blood pressure (sympathetic vascular transduction). To synthesize this growing body of literature we discuss sex and race differences in 1) sympathetic outflow, 2) sympathetic vascular transduction, and 3) adrenergic receptor sensitivity. Sex differences are discussed foremost, to set the stage for new data indicating a sex dimorphism in sympathetic regulation in BL individuals. Specifically, we highlight evidence for a potential neurogenic phenotype including greater adiposity-independent sympathetic outflow and enhanced sympathetic vascular transduction in BL men that is not observed in BL women. The implications of these findings for the greater hypertension and cardiovascular disease risk in BL adults are discussed along with areas that require further investigation.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.