{"title":"A Whitney Type Theorem for Surfaces: Characterising Graphs with Locally Planar Embeddings","authors":"Johannes Carmesin","doi":"10.1007/s00493-024-00118-y","DOIUrl":null,"url":null,"abstract":"<p>Given a graph <i>G</i> and a parameter <i>r</i>, we define the <i>r</i>-<i>local matroid</i> of <i>G</i> to be the matroid generated by its cycles of length at most <i>r</i>. Extending Whitney’s abstract planar duality theorem from 1932, we prove that for every <i>r</i> the <i>r</i>-local matroid of <i>G</i> is co-graphic if and only if <i>G</i> admits a certain type of embedding in a surface, which we call <i>r</i>-<i>planar embedding</i>. The maximum value of <i>r</i> such that a graph <i>G</i> admits an <i>r</i>-planar embedding is closely related to face-width, and such embeddings for this maximum value of <i>r</i> are quite often embeddings of minimum genus. Unlike minimum genus embeddings, these <i>r</i>-planar embeddings can be computed in polynomial time. This provides the first systematic and polynomially computable method to construct for every graph <i>G</i> a surface so that <i>G</i> embeds in that surface in an optimal way (phrased in our notion of <i>r</i>-planarity).</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00118-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph G and a parameter r, we define the r-local matroid of G to be the matroid generated by its cycles of length at most r. Extending Whitney’s abstract planar duality theorem from 1932, we prove that for every r the r-local matroid of G is co-graphic if and only if G admits a certain type of embedding in a surface, which we call r-planar embedding. The maximum value of r such that a graph G admits an r-planar embedding is closely related to face-width, and such embeddings for this maximum value of r are quite often embeddings of minimum genus. Unlike minimum genus embeddings, these r-planar embeddings can be computed in polynomial time. This provides the first systematic and polynomially computable method to construct for every graph G a surface so that G embeds in that surface in an optimal way (phrased in our notion of r-planarity).
给定一个图 G 和一个参数 r,我们将 G 的 r 局部矩阵定义为由最长为 r 的循环生成的矩阵。我们扩展了惠特尼在 1932 年提出的抽象平面对偶定理,证明对于每一个 r,当且仅当 G 在曲面中允许某种类型的嵌入(我们称之为 r 平面嵌入)时,G 的 r 局部矩阵是共图形的。使图 G 能够接受 r-planar 嵌入的 r 的最大值与面宽密切相关,而这种 r 的最大值的嵌入通常是最小属嵌入。与最小属嵌入不同,这些 r-planar 嵌入可以在多项式时间内计算。这提供了第一种系统的、可多项式计算的方法,为每个图 G 构建一个曲面,使 G 以最优方式嵌入该曲面(用我们的 r-planarity 概念表述)。
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.