{"title":"Utilizing FWT in linear cryptanalysis of block ciphers with various structures","authors":"Yin Lv, Danping Shi, Lei Hu, Yi Guo","doi":"10.1007/s10623-024-01458-y","DOIUrl":null,"url":null,"abstract":"<p>Linear cryptanalysis is one of the most classical cryptanalysis methods for block ciphers. Some critical techniques of the key-recovery phase are developed for enhancing linear cryptanalysis. Collard et al. improved the time complexity for last-round key-recovery attacks by using FWT. A generalized key-recovery algorithm for an arbitrary number of rounds with an associated time complexity formula is further provided by Flórez-Gutiérrez and Naya-Plasencia based on FWT in Eurocrypt 2020. However, the previous generalized algorithms are mainly applied to block ciphers with SPN structures, where the round-keys in the first and last round XORed to the state can be easily defined as <i>outer keys</i>. In Asiacrypt 2021, Leurent et al. applied the algorithm by Flórez-Gutiérrez et al. to Feistel structure ciphers. However, for other structures, such as NLFSR-based, the <i>outer keys</i> can not be directly deduced to utilize the previous algorithms. This paper extends the algorithm by Flórez-Gutiérrez et al. for more complicated structures, including but not limited to NLFSR-based, Feistel, ARX, and SPN. We also use the dependency relationships between ciphertext, plaintext and key information bits to eliminate the redundancy calculation and the improve analysis phase. We apply the algorithm with the improved analysis phase to KATAN (NLFSR-based) and SPARX (ARX). We obtain significantly improved results. The linear results we find for SPARX-128/128 beat other cryptanalytic techniques, becoming the best key recovery attacks on this cipher. The previous best linear attacks on KATAN32, KATAN48 and KATAN64 are improved by 9, 4, and 14 rounds, respectively.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"16 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01458-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Linear cryptanalysis is one of the most classical cryptanalysis methods for block ciphers. Some critical techniques of the key-recovery phase are developed for enhancing linear cryptanalysis. Collard et al. improved the time complexity for last-round key-recovery attacks by using FWT. A generalized key-recovery algorithm for an arbitrary number of rounds with an associated time complexity formula is further provided by Flórez-Gutiérrez and Naya-Plasencia based on FWT in Eurocrypt 2020. However, the previous generalized algorithms are mainly applied to block ciphers with SPN structures, where the round-keys in the first and last round XORed to the state can be easily defined as outer keys. In Asiacrypt 2021, Leurent et al. applied the algorithm by Flórez-Gutiérrez et al. to Feistel structure ciphers. However, for other structures, such as NLFSR-based, the outer keys can not be directly deduced to utilize the previous algorithms. This paper extends the algorithm by Flórez-Gutiérrez et al. for more complicated structures, including but not limited to NLFSR-based, Feistel, ARX, and SPN. We also use the dependency relationships between ciphertext, plaintext and key information bits to eliminate the redundancy calculation and the improve analysis phase. We apply the algorithm with the improved analysis phase to KATAN (NLFSR-based) and SPARX (ARX). We obtain significantly improved results. The linear results we find for SPARX-128/128 beat other cryptanalytic techniques, becoming the best key recovery attacks on this cipher. The previous best linear attacks on KATAN32, KATAN48 and KATAN64 are improved by 9, 4, and 14 rounds, respectively.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.