Lei Li, Xinchun Yu, Chenhao Ying, Liang Chen, Yuanyuan Dong, Yuan Luo
{"title":"MDS array codes with efficient repair and small sub-packetization level","authors":"Lei Li, Xinchun Yu, Chenhao Ying, Liang Chen, Yuanyuan Dong, Yuan Luo","doi":"10.1007/s10623-024-01440-8","DOIUrl":null,"url":null,"abstract":"<p>Modern data centers use erasure codes to provide high storage efficiency and fault tolerance. Reed–Solomon code is commonly deployed in large-scale distributed storage systems due to its ease of implementation, but it consumes massive bandwidth during node repair. Minimum storage regenerating (MSR) codes is a class of maximum distance separable (MDS) codes that achieve the lower bound on repair bandwidth. However, an exponential sub-packetization level is inevitable for MSR codes, resulting in massive disk I/O consumption during node repair. Disk I/O is becoming the bottleneck of the performance in data centers where the storage system needs to frequently provide high-speed data access to clients. In this paper, we consider disk I/O as an important metric to evaluate the performance of a code and construct MDS array codes with efficient repair under small sub-packetization level. Specifically, two explicit families of MDS codes with efficient repair are proposed at the sub-packetization level of <span>\\({\\mathcal {O}}(r)\\)</span>, where <i>r</i> denotes the number of parities. The first family of codes are constructed over a finite field <span>\\({\\mathbb {F}}_{q^m}\\)</span> where <span>\\(q \\ge n\\)</span> is a prime power, <span>\\(m > r(l-1) +1\\)</span>, <i>n</i> and <i>l</i> denote the code length and sub-packetization level, respectively. The second family of codes are built upon a special binary polynomial ring where the computation operations during node repair and file reconstruction are only XORs and cyclic shifts, avoiding complex multiplications and divisions over large finite fields.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01440-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern data centers use erasure codes to provide high storage efficiency and fault tolerance. Reed–Solomon code is commonly deployed in large-scale distributed storage systems due to its ease of implementation, but it consumes massive bandwidth during node repair. Minimum storage regenerating (MSR) codes is a class of maximum distance separable (MDS) codes that achieve the lower bound on repair bandwidth. However, an exponential sub-packetization level is inevitable for MSR codes, resulting in massive disk I/O consumption during node repair. Disk I/O is becoming the bottleneck of the performance in data centers where the storage system needs to frequently provide high-speed data access to clients. In this paper, we consider disk I/O as an important metric to evaluate the performance of a code and construct MDS array codes with efficient repair under small sub-packetization level. Specifically, two explicit families of MDS codes with efficient repair are proposed at the sub-packetization level of \({\mathcal {O}}(r)\), where r denotes the number of parities. The first family of codes are constructed over a finite field \({\mathbb {F}}_{q^m}\) where \(q \ge n\) is a prime power, \(m > r(l-1) +1\), n and l denote the code length and sub-packetization level, respectively. The second family of codes are built upon a special binary polynomial ring where the computation operations during node repair and file reconstruction are only XORs and cyclic shifts, avoiding complex multiplications and divisions over large finite fields.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.