Duality-Based Error Control for the Signorini Problem

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Ben S. Ashby, Tristan Pryer
{"title":"Duality-Based Error Control for the Signorini Problem","authors":"Ben S. Ashby, Tristan Pryer","doi":"10.1137/22m1534791","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1687-1712, August 2024. <br/> Abstract. In this paper we study the a posteriori bounds for a conforming piecewise linear finite element approximation of the Signorini problem. We prove new rigorous a posteriori estimates of residual type in [math], for [math] in two spatial dimensions. This new analysis treats the positive and negative parts of the discretization error separately, requiring a novel sign- and bound-preserving interpolant, which is shown to have optimal approximation properties. The estimates rely on the sharp dual stability results on the problem in [math] for any [math]. We summarize extensive numerical experiments aimed at testing the robustness of the estimator to validate the theory.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1534791","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1687-1712, August 2024.
Abstract. In this paper we study the a posteriori bounds for a conforming piecewise linear finite element approximation of the Signorini problem. We prove new rigorous a posteriori estimates of residual type in [math], for [math] in two spatial dimensions. This new analysis treats the positive and negative parts of the discretization error separately, requiring a novel sign- and bound-preserving interpolant, which is shown to have optimal approximation properties. The estimates rely on the sharp dual stability results on the problem in [math] for any [math]. We summarize extensive numerical experiments aimed at testing the robustness of the estimator to validate the theory.
基于对偶性的西格诺里尼问题误差控制
SIAM 数值分析期刊》第 62 卷第 4 期第 1687-1712 页,2024 年 8 月。 摘要本文研究了 Signorini 问题的符合片断线性有限元近似的后验边界。我们证明了[math]中残差类型的新的严格后验估计,适用于两个空间维度的[math]。这一新的分析分别处理离散化误差的正负部分,需要一个新颖的符号和边界保留插值,并证明其具有最佳近似特性。对于任意[math]问题,估计值依赖于[math]中关于该问题的尖锐对偶稳定性结果。我们总结了大量旨在测试估计器稳健性的数值实验,以验证理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信