Zero and Finite Temperature Quantum Simulations Powered by Quantum Magic

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-07-23 DOI:10.22331/q-2024-07-23-1422
Andi Gu, Hong-Ye Hu, Di Luo, Taylor L. Patti, Nicholas C. Rubin, Susanne F. Yelin
{"title":"Zero and Finite Temperature Quantum Simulations Powered by Quantum Magic","authors":"Andi Gu, Hong-Ye Hu, Di Luo, Taylor L. Patti, Nicholas C. Rubin, Susanne F. Yelin","doi":"10.22331/q-2024-07-23-1422","DOIUrl":null,"url":null,"abstract":"We introduce a quantum information theory-inspired method to improve the characterization of many-body Hamiltonians on near-term quantum devices. We design a new class of similarity transformations that, when applied as a preprocessing step, can substantially simplify a Hamiltonian for subsequent analysis on quantum hardware. By design, these transformations can be identified and applied efficiently using purely classical resources. In practice, these transformations allow us to shorten requisite physical circuit-depths, overcoming constraints imposed by imperfect near-term hardware. Importantly, the quality of our transformations is $tunable$: we define a 'ladder' of transformations that yields increasingly simple Hamiltonians at the cost of more classical computation. Using quantum chemistry as a benchmark application, we demonstrate that our protocol leads to significant performance improvements for zero and finite temperature free energy calculations on both digital and analog quantum hardware. Specifically, our energy estimates not only outperform traditional Hartree-Fock solutions, but this performance gap also consistently widens as we tune up the quality of our transformations. In short, our quantum information-based approach opens promising new pathways to realizing useful and feasible quantum chemistry algorithms on near-term hardware.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-07-23-1422","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a quantum information theory-inspired method to improve the characterization of many-body Hamiltonians on near-term quantum devices. We design a new class of similarity transformations that, when applied as a preprocessing step, can substantially simplify a Hamiltonian for subsequent analysis on quantum hardware. By design, these transformations can be identified and applied efficiently using purely classical resources. In practice, these transformations allow us to shorten requisite physical circuit-depths, overcoming constraints imposed by imperfect near-term hardware. Importantly, the quality of our transformations is $tunable$: we define a 'ladder' of transformations that yields increasingly simple Hamiltonians at the cost of more classical computation. Using quantum chemistry as a benchmark application, we demonstrate that our protocol leads to significant performance improvements for zero and finite temperature free energy calculations on both digital and analog quantum hardware. Specifically, our energy estimates not only outperform traditional Hartree-Fock solutions, but this performance gap also consistently widens as we tune up the quality of our transformations. In short, our quantum information-based approach opens promising new pathways to realizing useful and feasible quantum chemistry algorithms on near-term hardware.
量子魔力推动的零温和有限温度量子模拟
我们介绍了一种受量子信息论启发的方法,以改进近期量子设备上多体哈密顿的表征。我们设计了一类新的相似性变换,在作为预处理步骤应用时,可以大大简化哈密顿,以便随后在量子硬件上进行分析。根据设计,这些变换可以利用纯经典资源高效地识别和应用。在实践中,这些变换允许我们缩短所需的物理电路深度,克服不完善的近期硬件所带来的限制。重要的是,我们的变换质量是可调的:我们定义了一个变换 "阶梯",以更多经典计算为代价,获得越来越简单的哈密顿。以量子化学作为基准应用,我们证明了我们的协议能显著提高数字和模拟量子硬件上零温度和有限温度自由能计算的性能。具体来说,我们的能量估计不仅优于传统的哈特里-福克(Hartree-Fock)解决方案,而且随着我们对转换质量的调整,这种性能差距还在不断扩大。简而言之,我们基于量子信息的方法为在近期硬件上实现有用、可行的量子化学算法开辟了前景广阔的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信