Decoding of Polar Codes Using Quadratic Unconstrained Binary Optimization

Huayi Zhou;Ryan Seah;Marwan Jalaleddine;Warren J. Gross
{"title":"Decoding of Polar Codes Using Quadratic Unconstrained Binary Optimization","authors":"Huayi Zhou;Ryan Seah;Marwan Jalaleddine;Warren J. Gross","doi":"10.1109/JSAC.2024.3431579","DOIUrl":null,"url":null,"abstract":"Polar codes encounter challenges in decoder complexity while preserving good error-correction properties. Instead of conventional decoders, a quantum annealer (QA) decoder has been proposed to explore untapped possibilities. For future QA applications, a crucial prerequisite is transforming the optimization problem into quadratic unconstrained binary optimization (QUBO) form. However, existing QUBO forms for polar decoding result in suboptimal frame error rate (FER) performance for codes exceeding 8 bits. This paper redesigns the QUBO form for polar decoding. We first introduce a novel receiver constraint modeled by the binary cross-entropy (BCE) function. Utilizing a simulated annealing (SA) solver with the proposed QUBO form with BCE (QUBO-BCE) achieves maximum-likelihood (ML) performance for a code length of 32 bits. Next, to reduce the number of variables, we remove the frozen variables and introduce a simplified QUBO-BCE form (SQUBO-BCE). Additionally, CRC polynomials are modelled into constraints in QUBO form, resulting in a CRC-aided SQUBO-BCE (CA-SQUBO-BCE) form for polar decoding to further enhance the FER. Numerical results demonstrate that SQUBO-BCE achieves ML performance and reduces up to 61.5% of variables compared to QUBO-BCE. Furthermore, the proposed CA-SQUBO-BCE achieves near CRC-aided ML performance. The proposed SQUBO-BCE requires the lowest number of SA processes to reach a specific FER.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 11","pages":"3204-3216"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10605792/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polar codes encounter challenges in decoder complexity while preserving good error-correction properties. Instead of conventional decoders, a quantum annealer (QA) decoder has been proposed to explore untapped possibilities. For future QA applications, a crucial prerequisite is transforming the optimization problem into quadratic unconstrained binary optimization (QUBO) form. However, existing QUBO forms for polar decoding result in suboptimal frame error rate (FER) performance for codes exceeding 8 bits. This paper redesigns the QUBO form for polar decoding. We first introduce a novel receiver constraint modeled by the binary cross-entropy (BCE) function. Utilizing a simulated annealing (SA) solver with the proposed QUBO form with BCE (QUBO-BCE) achieves maximum-likelihood (ML) performance for a code length of 32 bits. Next, to reduce the number of variables, we remove the frozen variables and introduce a simplified QUBO-BCE form (SQUBO-BCE). Additionally, CRC polynomials are modelled into constraints in QUBO form, resulting in a CRC-aided SQUBO-BCE (CA-SQUBO-BCE) form for polar decoding to further enhance the FER. Numerical results demonstrate that SQUBO-BCE achieves ML performance and reduces up to 61.5% of variables compared to QUBO-BCE. Furthermore, the proposed CA-SQUBO-BCE achieves near CRC-aided ML performance. The proposed SQUBO-BCE requires the lowest number of SA processes to reach a specific FER.
利用二次无约束二进制优化对极性编码进行解码
极地编码在保持良好纠错特性的同时,在解码器复杂性方面也遇到了挑战。与传统解码器相比,量子退火器(QA)解码器被提出来探索尚未开发的可能性。对于未来的 QA 应用,一个重要的先决条件是将优化问题转化为二次无约束二元优化(QUBO)形式。然而,现有的极性解码 QUBO 形式会导致超过 8 比特的编码的帧误码率(FER)性能不理想。本文重新设计了极性解码的 QUBO 形式。我们首先引入了一种以二元交叉熵(BCE)函数为模型的新型接收器约束。利用模拟退火(SA)求解器和所提出的带 BCE 的 QUBO 形式(QUBO-BCE),在代码长度为 32 位时实现了最大似然(ML)性能。接下来,为了减少变量数量,我们删除了冻结变量,并引入了简化的 QUBO-BCE 形式(SQUBO-BCE)。此外,CRC 多项式被模拟为 QUBO 形式中的约束条件,从而产生了用于极性解码的 CRC 辅助 SQUBO-BCE 形式(CA-SQUBO-BCE),进一步提高了 FER。数值结果表明,与 QUBO-BCE 相比,SQUBO-BCE 实现了 ML 性能,并减少了高达 61.5% 的变量。此外,所提出的 CA-SQUBO-BCE 达到了接近 CRC 辅助的 ML 性能。提议的 SQUBO-BCE 需要最少的 SA 进程来达到特定的 FER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信