{"title":"Characterization of Entanglement via Non-Existence of a Subquantum Random Field","authors":"Andrei Khrennikov","doi":"10.1002/andp.202400035","DOIUrl":null,"url":null,"abstract":"<p>Any pure state <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Ψ</mi>\n <mo>⟩</mo>\n </mrow>\n <annotation>$|\\Psi \\rangle$</annotation>\n </semantics></math> of a compound system <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>S</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$S=(S_1,S_2)$</annotation>\n </semantics></math> with the state space <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>=</mo>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mo>⊗</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\cal H}= {\\cal H}_1\\otimes {\\cal H}_2$</annotation>\n </semantics></math> determines a kind of covariance operator <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̂</mo>\n </mover>\n <mi>Ψ</mi>\n </msub>\n <annotation>$\\hat{D}_\\Psi$</annotation>\n </semantics></math> acting in the Cartesian product <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>=</mo>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\bf H}= {\\cal H}_1\\times {\\cal H}_2$</annotation>\n </semantics></math>. If this operator is positively defined, then it determines a random field valued in <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>${\\bf H}$</annotation>\n </semantics></math>. In this case compound quantum system <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> can be treated as a classical random field system whose configuration space is not tensor, but Cartesian product space. It happens that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̂</mo>\n </mover>\n <mi>Ψ</mi>\n </msub>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\hat{D}_\\Psi \\ge 0$</annotation>\n </semantics></math> and a subquantum process exists if and only if quantum state <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Ψ</mi>\n <mo>⟩</mo>\n </mrow>\n <annotation>$|\\Psi \\rangle$</annotation>\n </semantics></math> is not entangled. The technical framework used in this note is already presented by von Neumann.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Any pure state of a compound system with the state space determines a kind of covariance operator acting in the Cartesian product . If this operator is positively defined, then it determines a random field valued in . In this case compound quantum system can be treated as a classical random field system whose configuration space is not tensor, but Cartesian product space. It happens that and a subquantum process exists if and only if quantum state is not entangled. The technical framework used in this note is already presented by von Neumann.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.