Characterization of Entanglement via Non-Existence of a Subquantum Random Field

IF 2.2 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Andrei Khrennikov
{"title":"Characterization of Entanglement via Non-Existence of a Subquantum Random Field","authors":"Andrei Khrennikov","doi":"10.1002/andp.202400035","DOIUrl":null,"url":null,"abstract":"<p>Any pure state <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Ψ</mi>\n <mo>⟩</mo>\n </mrow>\n <annotation>$|\\Psi \\rangle$</annotation>\n </semantics></math> of a compound system <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>S</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$S=(S_1,S_2)$</annotation>\n </semantics></math> with the state space <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>=</mo>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mo>⊗</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\cal H}= {\\cal H}_1\\otimes {\\cal H}_2$</annotation>\n </semantics></math> determines a kind of covariance operator <span></span><math>\n <semantics>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̂</mo>\n </mover>\n <mi>Ψ</mi>\n </msub>\n <annotation>$\\hat{D}_\\Psi$</annotation>\n </semantics></math> acting in the Cartesian product <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>=</mo>\n <msub>\n <mi>H</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${\\bf H}= {\\cal H}_1\\times {\\cal H}_2$</annotation>\n </semantics></math>. If this operator is positively defined, then it determines a random field valued in <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>${\\bf H}$</annotation>\n </semantics></math>. In this case compound quantum system <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> can be treated as a classical random field system whose configuration space is not tensor, but Cartesian product space. It happens that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mover>\n <mi>D</mi>\n <mo>̂</mo>\n </mover>\n <mi>Ψ</mi>\n </msub>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\hat{D}_\\Psi \\ge 0$</annotation>\n </semantics></math> and a subquantum process exists if and only if quantum state <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>Ψ</mi>\n <mo>⟩</mo>\n </mrow>\n <annotation>$|\\Psi \\rangle$</annotation>\n </semantics></math> is not entangled. The technical framework used in this note is already presented by von Neumann.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 9","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202400035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400035","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Any pure state | Ψ $|\Psi \rangle$ of a compound system S = ( S 1 , S 2 ) $S=(S_1,S_2)$ with the state space H = H 1 H 2 ${\cal H}= {\cal H}_1\otimes {\cal H}_2$ determines a kind of covariance operator D ̂ Ψ $\hat{D}_\Psi$ acting in the Cartesian product H = H 1 × H 2 ${\bf H}= {\cal H}_1\times {\cal H}_2$ . If this operator is positively defined, then it determines a random field valued in H ${\bf H}$ . In this case compound quantum system S $S$ can be treated as a classical random field system whose configuration space is not tensor, but Cartesian product space. It happens that D ̂ Ψ 0 $\hat{D}_\Psi \ge 0$ and a subquantum process exists if and only if quantum state | Ψ $|\Psi \rangle$ is not entangled. The technical framework used in this note is already presented by von Neumann.

Abstract Image

Abstract Image

通过亚量子随机场的不存在表征纠缠
一个复合系统 S=(S1,S2)$S=(S_1、S_2)$ 与状态空间 H=H1⊗H2${\cal H}= {\cal H}_1\times {\cal H}_2$ 决定了一种协方差算子 D̂Ψ$hat\{D}_\Psi$ 作用于笛卡尔积 H=H1×H2${\bf H}= {\cal H}_1\times {\cal H}_2$.如果这个算子是正定义的,那么它就决定了一个在 H${\bf H}$ 中估值的随机场。在这种情况下,复合量子系统 S$S$ 可以被视为经典随机场系统,其配置空间不是张量空间,而是笛卡尔积空间。当且仅当量子态 |Ψ⟩$|Psi \rangle$ 不纠缠时,D̂Ψ≥0$\hat{D}_\Psi \ge 0$ 和子量子过程才会存在。冯-诺依曼(von Neumann)已经提出了本注释中使用的技术框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信