Multi-parameter quantum estimation of single- and two-mode pure Gaussian states

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Gabriele Bressanini, Marco G Genoni, M S Kim and Matteo G A Paris
{"title":"Multi-parameter quantum estimation of single- and two-mode pure Gaussian states","authors":"Gabriele Bressanini, Marco G Genoni, M S Kim and Matteo G A Paris","doi":"10.1088/1751-8121/ad6364","DOIUrl":null,"url":null,"abstract":"We discuss the ultimate precision bounds on the multiparameter estimation of single- and two-mode pure Gaussian states. By leveraging on previous approaches that focused on the estimation of a complex displacement only, we derive the Holevo Cramér–Rao bound (HCRB) for both displacement and squeezing parameter characterizing single and two-mode squeezed states. In the single-mode scenario, we obtain an analytical bound and find that it degrades monotonically as the squeezing increases. Furthermore, we prove that heterodyne detection is nearly optimal in the large squeezing limit, but in general the optimal measurement must include non-Gaussian resources. On the other hand, in the two-mode setting, the HCRB improves as the squeezing parameter grows and we show that it can be attained using double-homodyne detection.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"77 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad6364","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss the ultimate precision bounds on the multiparameter estimation of single- and two-mode pure Gaussian states. By leveraging on previous approaches that focused on the estimation of a complex displacement only, we derive the Holevo Cramér–Rao bound (HCRB) for both displacement and squeezing parameter characterizing single and two-mode squeezed states. In the single-mode scenario, we obtain an analytical bound and find that it degrades monotonically as the squeezing increases. Furthermore, we prove that heterodyne detection is nearly optimal in the large squeezing limit, but in general the optimal measurement must include non-Gaussian resources. On the other hand, in the two-mode setting, the HCRB improves as the squeezing parameter grows and we show that it can be attained using double-homodyne detection.
单模和双模纯高斯状态的多参数量子估算
我们讨论了单模和双模纯高斯状态多参数估计的最终精度界限。通过利用以前只关注复位移估计的方法,我们推导出了描述单模和双模挤压态的位移和挤压参数的 Holevo Cramér-Rao 约束 (HCRB)。在单模情况下,我们得到了一个分析约束,并发现它随着挤压的增加而单调退化。此外,我们还证明,在大挤压极限下,外差探测几乎是最优的,但一般来说,最优测量必须包括非高斯资源。另一方面,在双模式设置中,HCRB 会随着挤压参数的增加而改善,我们还证明了可以通过双同调检测来达到这一目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信