Sathishkumar Samiappan, B Santhana Krishnan, Damion Dehart, Landon R Jones, Jared A Elmore, Kristine O Evans, Raymond B Iglay
{"title":"Aerial Wildlife Image Repository for animal monitoring with drones in the age of artificial intelligence.","authors":"Sathishkumar Samiappan, B Santhana Krishnan, Damion Dehart, Landon R Jones, Jared A Elmore, Kristine O Evans, Raymond B Iglay","doi":"10.1093/database/baae070","DOIUrl":null,"url":null,"abstract":"<p><p>Drones (unoccupied aircraft systems) have become effective tools for wildlife monitoring and conservation. Automated animal detection and classification using artificial intelligence (AI) can substantially reduce logistical and financial costs and improve drone surveys. However, the lack of annotated animal imagery for training AI is a critical bottleneck in achieving accurate performance of AI algorithms compared to other fields. To bridge this gap for drone imagery and help advance and standardize automated animal classification, we have created the Aerial Wildlife Image Repository (AWIR), which is a dynamic, interactive database with annotated images captured from drone platforms using visible and thermal cameras. The AWIR provides the first open-access repository for users to upload, annotate, and curate images of animals acquired from drones. The AWIR also provides annotated imagery and benchmark datasets that users can download to train AI algorithms to automatically detect and classify animals, and compare algorithm performance. The AWIR contains 6587 animal objects in 1325 visible and thermal drone images of predominantly large birds and mammals of 13 species in open areas of North America. As contributors increase the taxonomic and geographic diversity of available images, the AWIR will open future avenues for AI research to improve animal surveys using drones for conservation applications. Database URL: https://projectportal.gri.msstate.edu/awir/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265857/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae070","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drones (unoccupied aircraft systems) have become effective tools for wildlife monitoring and conservation. Automated animal detection and classification using artificial intelligence (AI) can substantially reduce logistical and financial costs and improve drone surveys. However, the lack of annotated animal imagery for training AI is a critical bottleneck in achieving accurate performance of AI algorithms compared to other fields. To bridge this gap for drone imagery and help advance and standardize automated animal classification, we have created the Aerial Wildlife Image Repository (AWIR), which is a dynamic, interactive database with annotated images captured from drone platforms using visible and thermal cameras. The AWIR provides the first open-access repository for users to upload, annotate, and curate images of animals acquired from drones. The AWIR also provides annotated imagery and benchmark datasets that users can download to train AI algorithms to automatically detect and classify animals, and compare algorithm performance. The AWIR contains 6587 animal objects in 1325 visible and thermal drone images of predominantly large birds and mammals of 13 species in open areas of North America. As contributors increase the taxonomic and geographic diversity of available images, the AWIR will open future avenues for AI research to improve animal surveys using drones for conservation applications. Database URL: https://projectportal.gri.msstate.edu/awir/.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.