Enhanced fatty acid biosynthesis by Sigma28 in stringent responses contributes to multidrug resistance and biofilm formation in Helicobacter pylori.

IF 4.5 2区 医学 Q2 MICROBIOLOGY
Antimicrobial Agents and Chemotherapy Pub Date : 2024-09-04 Epub Date: 2024-07-24 DOI:10.1128/aac.00850-24
Junyuan Xue, Shutong Li, Liyuan Wang, Yican Zhao, Lu Zhang, Yantong Zheng, Wenxin Zhang, Zhenghong Chen, Ting Jiang, Yundong Sun
{"title":"Enhanced fatty acid biosynthesis by Sigma28 in stringent responses contributes to multidrug resistance and biofilm formation in <i>Helicobacter pylori</i>.","authors":"Junyuan Xue, Shutong Li, Liyuan Wang, Yican Zhao, Lu Zhang, Yantong Zheng, Wenxin Zhang, Zhenghong Chen, Ting Jiang, Yundong Sun","doi":"10.1128/aac.00850-24","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic state of bacteria significantly contributes to their resistance to antibiotics; however, the specific metabolic mechanisms conferring antimicrobial resistance in <i>Helicobacter pylori</i> remain largely understudied. Employing transcriptomic and non-targeted metabolomics, we characterized the metabolic reprogramming of <i>H. pylori</i> when challenged with antibiotic agents. We observed a notable increase in both genetic and key proteomic components involved in fatty acid biosynthesis. Inhibition of this pathway significantly enhanced the antibiotic susceptibility of the sensitive and multidrug-resistant <i>H. pylori</i> strains while also disrupting their biofilm-forming capacities. Further analysis revealed that antibiotic treatment induced a stringent response, triggering the expression of the <i>hp0560-hp0557</i> operon regulated by Sigma28 (σ<sup>28</sup>). This activation in turn stimulated the fatty acid biosynthetic pathway, thereby enhancing the antibiotic tolerance of <i>H. pylori</i>. Our findings reveal a novel adaptive strategy employed by <i>H. pylori</i> to withstand antibiotic stress.</p>","PeriodicalId":8152,"journal":{"name":"Antimicrobial Agents and Chemotherapy","volume":" ","pages":"e0085024"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antimicrobial Agents and Chemotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/aac.00850-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The metabolic state of bacteria significantly contributes to their resistance to antibiotics; however, the specific metabolic mechanisms conferring antimicrobial resistance in Helicobacter pylori remain largely understudied. Employing transcriptomic and non-targeted metabolomics, we characterized the metabolic reprogramming of H. pylori when challenged with antibiotic agents. We observed a notable increase in both genetic and key proteomic components involved in fatty acid biosynthesis. Inhibition of this pathway significantly enhanced the antibiotic susceptibility of the sensitive and multidrug-resistant H. pylori strains while also disrupting their biofilm-forming capacities. Further analysis revealed that antibiotic treatment induced a stringent response, triggering the expression of the hp0560-hp0557 operon regulated by Sigma28 (σ28). This activation in turn stimulated the fatty acid biosynthetic pathway, thereby enhancing the antibiotic tolerance of H. pylori. Our findings reveal a novel adaptive strategy employed by H. pylori to withstand antibiotic stress.

Sigma28 在严格反应中脂肪酸生物合成的增强有助于幽门螺旋杆菌的多药耐药性和生物膜的形成。
细菌的代谢状态在很大程度上决定了它们对抗生素的耐药性;然而,幽门螺杆菌产生抗菌耐药性的具体代谢机制在很大程度上仍未得到充分研究。利用转录组学和非靶向代谢组学,我们描述了幽门螺杆菌在受到抗生素挑战时的代谢重编程。我们观察到,参与脂肪酸生物合成的基因组和关键蛋白质组成分明显增加。抑制这一途径可显著增强敏感和耐多药幽门螺杆菌菌株对抗生素的敏感性,同时还能破坏它们的生物膜形成能力。进一步的分析表明,抗生素治疗诱导了一种严格的反应,触发了由 Sigma28(σ28)调控的 hp0560-hp0557 操作子的表达。这种激活反过来又刺激了脂肪酸生物合成途径,从而增强了幽门螺杆菌的抗生素耐受性。我们的发现揭示了幽门螺杆菌为抵御抗生素压力而采用的一种新的适应性策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
8.20%
发文量
762
审稿时长
3 months
期刊介绍: Antimicrobial Agents and Chemotherapy (AAC) features interdisciplinary studies that build our understanding of the underlying mechanisms and therapeutic applications of antimicrobial and antiparasitic agents and chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信