Rebecca Whittle, Joie Ensor, Miriam Hattle, Paula Dhiman, Gary S. Collins, Richard D. Riley
{"title":"Calculating the power of a planned individual participant data meta-analysis to examine prognostic factor effects for a binary outcome","authors":"Rebecca Whittle, Joie Ensor, Miriam Hattle, Paula Dhiman, Gary S. Collins, Richard D. Riley","doi":"10.1002/jrsm.1737","DOIUrl":null,"url":null,"abstract":"<p>Collecting data for an individual participant data meta-analysis (IPDMA) project can be time consuming and resource intensive and could still have insufficient power to answer the question of interest. Therefore, researchers should consider the power of their planned IPDMA before collecting IPD. Here we propose a method to estimate the power of a planned IPDMA project aiming to synthesise multiple cohort studies to investigate the (unadjusted or adjusted) effects of potential prognostic factors for a binary outcome. We consider both binary and continuous factors and provide a three-step approach to estimating the power in advance of collecting IPD, under an assumption of the true prognostic effect of each factor of interest. The first step uses routinely available (published) aggregate data for each study to approximate Fisher's information matrix and thereby estimate the anticipated variance of the unadjusted prognostic factor effect in each study. These variances are then used in step 2 to estimate the anticipated variance of the summary prognostic effect from the IPDMA. Finally, step 3 uses this variance to estimate the corresponding IPDMA power, based on a two-sided Wald test and the assumed true effect. Extensions are provided to adjust the power calculation for the presence of additional covariates correlated with the prognostic factor of interest (by using a variance inflation factor) and to allow for between-study heterogeneity in prognostic effects. An example is provided for illustration, and Stata code is supplied to enable researchers to implement the method.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 6","pages":"905-916"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1737","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1737","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Collecting data for an individual participant data meta-analysis (IPDMA) project can be time consuming and resource intensive and could still have insufficient power to answer the question of interest. Therefore, researchers should consider the power of their planned IPDMA before collecting IPD. Here we propose a method to estimate the power of a planned IPDMA project aiming to synthesise multiple cohort studies to investigate the (unadjusted or adjusted) effects of potential prognostic factors for a binary outcome. We consider both binary and continuous factors and provide a three-step approach to estimating the power in advance of collecting IPD, under an assumption of the true prognostic effect of each factor of interest. The first step uses routinely available (published) aggregate data for each study to approximate Fisher's information matrix and thereby estimate the anticipated variance of the unadjusted prognostic factor effect in each study. These variances are then used in step 2 to estimate the anticipated variance of the summary prognostic effect from the IPDMA. Finally, step 3 uses this variance to estimate the corresponding IPDMA power, based on a two-sided Wald test and the assumed true effect. Extensions are provided to adjust the power calculation for the presence of additional covariates correlated with the prognostic factor of interest (by using a variance inflation factor) and to allow for between-study heterogeneity in prognostic effects. An example is provided for illustration, and Stata code is supplied to enable researchers to implement the method.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.