GAN-Based Motion Artifact Correction of 3D MR Volumes Using an Image-to-Image Translation Algorithm.

Vishnu Vardhan Reddy Kanamata Reddy, Chandan Ganesh Bangalore Yogananda, Nghi C D Truong, Ananth J Madhuranthakam, Joseph A Maldjian, Baowei Fei
{"title":"GAN-Based Motion Artifact Correction of 3D MR Volumes Using an Image-to-Image Translation Algorithm.","authors":"Vishnu Vardhan Reddy Kanamata Reddy, Chandan Ganesh Bangalore Yogananda, Nghi C D Truong, Ananth J Madhuranthakam, Joseph A Maldjian, Baowei Fei","doi":"10.1117/12.3007743","DOIUrl":null,"url":null,"abstract":"<p><p>The quality of brain MRI volumes is often compromised by motion artifacts arising from intricate respiratory patterns and involuntary head movements, manifesting as blurring and ghosting that markedly degrade imaging quality. In this study, we introduce an innovative approach employing a 3D deep learning framework to restore brain MR volumes afflicted by motion artifacts. The framework integrates a densely connected 3D U-net architecture augmented by generative adversarial network (GAN)-informed training with a novel volumetric reconstruction loss function tailored to 3D GAN to enhance the quality of the volumes. Our methodology is substantiated through comprehensive experimentation involving a diverse set of motion artifact-affected MR volumes. The generated high-quality MR volumes have similar volumetric signatures comparable to motion-free MR volumes after motion correction. This underscores the significant potential of harnessing this 3D deep learning system to aid in the rectification of motion artifacts in brain MR volumes, highlighting a promising avenue for advanced clinical applications.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12930 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262355/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3007743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quality of brain MRI volumes is often compromised by motion artifacts arising from intricate respiratory patterns and involuntary head movements, manifesting as blurring and ghosting that markedly degrade imaging quality. In this study, we introduce an innovative approach employing a 3D deep learning framework to restore brain MR volumes afflicted by motion artifacts. The framework integrates a densely connected 3D U-net architecture augmented by generative adversarial network (GAN)-informed training with a novel volumetric reconstruction loss function tailored to 3D GAN to enhance the quality of the volumes. Our methodology is substantiated through comprehensive experimentation involving a diverse set of motion artifact-affected MR volumes. The generated high-quality MR volumes have similar volumetric signatures comparable to motion-free MR volumes after motion correction. This underscores the significant potential of harnessing this 3D deep learning system to aid in the rectification of motion artifacts in brain MR volumes, highlighting a promising avenue for advanced clinical applications.

使用图像到图像平移算法对基于 GAN 的三维 MR 卷进行运动伪影校正。
复杂的呼吸模式和头部不自主运动产生的运动伪影往往会影响脑部磁共振成像的质量,表现为模糊和重影,明显降低成像质量。在这项研究中,我们引入了一种创新方法,利用三维深度学习框架来恢复受运动伪影影响的脑磁共振成像体积。该框架整合了密集连接的三维 U-net 架构,并通过生成式对抗网络(GAN)信息训练和为三维 GAN 量身定制的新型容积重建损失函数来提高容积质量。我们的方法通过涉及一组受运动伪影影响的不同 MR 容量的全面实验得到了证实。经过运动校正后,生成的高质量磁共振容积与无运动磁共振容积具有相似的容积特征。这凸显了利用这种三维深度学习系统来帮助纠正脑部磁共振成像卷运动伪影的巨大潜力,为先进的临床应用提供了广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信