Neel S Iyer, Matthew H Mossayebi, Tracy J Gao, Lylach Haizler-Cohen, Daniele Di Mascio, Rodney A McLaren, Huda B Al-Kouatly
{"title":"Glucose-6-phosphate dehydrogenase deficiency as a cause for nonimmune hydrops fetalis and severe fetal anemia: A systematic review.","authors":"Neel S Iyer, Matthew H Mossayebi, Tracy J Gao, Lylach Haizler-Cohen, Daniele Di Mascio, Rodney A McLaren, Huda B Al-Kouatly","doi":"10.1002/mgg3.2491","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disorder that predisposes individuals to hemolysis due to an inborn error of metabolism. We performed a systematic literature review to evaluate G6PD deficiency as a possible etiology of nonimmune hydrops fetalis (NIHF) and severe fetal anemia.</p><p><strong>Methods: </strong>PubMed, OVID Medline, Scopus, and clinicaltrials.gov were queried from inception until 31 April 2023 for all published cases of NIHF and severe fetal anemia caused by G6PD deficiency. Keywords included \"fetal edema,\" \"hydrops fetalis,\" \"glucose 6 phosphate dehydrogenase deficiency,\" and \"fetal anemia.\" Cases with workup presuming G6PD deficiency as an etiology for NIHF and severe fetal anemia were included. PRISMA guidelines were followed.</p><p><strong>Results: </strong>Five cases of G6PD-related NIHF and one case of severe fetal anemia were identified. Four fetuses (4/6, 66.7%) were male and two fetuses (2/6, 33.3%) were female. Mean gestational age at diagnosis of NIHF/anemia and delivery was 32.2 ± 4.9 and 35.7 ± 2.4 weeks, respectively. Four cases (66.7%) required a cordocentesis for fetal transfusion, and two cases (33.3%) received blood transfusions immediately following delivery. Among the four multigravida cases, two (50%) noted previous pregnancies complicated by neonatal anemia. When reported, the maternal cases included two G6PD deficiency carrier patients and two G6PD-deficient patients. Exposures to substances known to cause G6PD deficiency-related hemolysis occurred in 3/6 (50%) cases.</p><p><strong>Conclusion: </strong>Six cases of NIHF/severe fetal anemia were associated with G6PD deficiency. While G6PD deficiency is an X-linked recessive condition, female fetuses can be affected. Fetal G6PD deficiency testing can be considered if parental history indicates, particularly if the standard workup for NIHF is negative.</p>","PeriodicalId":18852,"journal":{"name":"Molecular Genetics & Genomic Medicine","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264253/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics & Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mgg3.2491","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disorder that predisposes individuals to hemolysis due to an inborn error of metabolism. We performed a systematic literature review to evaluate G6PD deficiency as a possible etiology of nonimmune hydrops fetalis (NIHF) and severe fetal anemia.
Methods: PubMed, OVID Medline, Scopus, and clinicaltrials.gov were queried from inception until 31 April 2023 for all published cases of NIHF and severe fetal anemia caused by G6PD deficiency. Keywords included "fetal edema," "hydrops fetalis," "glucose 6 phosphate dehydrogenase deficiency," and "fetal anemia." Cases with workup presuming G6PD deficiency as an etiology for NIHF and severe fetal anemia were included. PRISMA guidelines were followed.
Results: Five cases of G6PD-related NIHF and one case of severe fetal anemia were identified. Four fetuses (4/6, 66.7%) were male and two fetuses (2/6, 33.3%) were female. Mean gestational age at diagnosis of NIHF/anemia and delivery was 32.2 ± 4.9 and 35.7 ± 2.4 weeks, respectively. Four cases (66.7%) required a cordocentesis for fetal transfusion, and two cases (33.3%) received blood transfusions immediately following delivery. Among the four multigravida cases, two (50%) noted previous pregnancies complicated by neonatal anemia. When reported, the maternal cases included two G6PD deficiency carrier patients and two G6PD-deficient patients. Exposures to substances known to cause G6PD deficiency-related hemolysis occurred in 3/6 (50%) cases.
Conclusion: Six cases of NIHF/severe fetal anemia were associated with G6PD deficiency. While G6PD deficiency is an X-linked recessive condition, female fetuses can be affected. Fetal G6PD deficiency testing can be considered if parental history indicates, particularly if the standard workup for NIHF is negative.
期刊介绍:
Molecular Genetics & Genomic Medicine is a peer-reviewed journal for rapid dissemination of quality research related to the dynamically developing areas of human, molecular and medical genetics. The journal publishes original research articles covering findings in phenotypic, molecular, biological, and genomic aspects of genomic variation, inherited disorders and birth defects. The broad publishing spectrum of Molecular Genetics & Genomic Medicine includes rare and common disorders from diagnosis to treatment. Examples of appropriate articles include reports of novel disease genes, functional studies of genetic variants, in-depth genotype-phenotype studies, genomic analysis of inherited disorders, molecular diagnostic methods, medical bioinformatics, ethical, legal, and social implications (ELSI), and approaches to clinical diagnosis. Molecular Genetics & Genomic Medicine provides a scientific home for next generation sequencing studies of rare and common disorders, which will make research in this fascinating area easily and rapidly accessible to the scientific community. This will serve as the basis for translating next generation sequencing studies into individualized diagnostics and therapeutics, for day-to-day medical care.
Molecular Genetics & Genomic Medicine publishes original research articles, reviews, and research methods papers, along with invited editorials and commentaries. Original research papers must report well-conducted research with conclusions supported by the data presented.