Chunyi Zhao, Samuel T Slocum, David H Sherman, Brandon T Ruotolo
{"title":"Time-Resolved Ion Mobility-Mass Spectrometry Reveals Structural Transitions in the Disassembly of Modular Polyketide Syntheses.","authors":"Chunyi Zhao, Samuel T Slocum, David H Sherman, Brandon T Ruotolo","doi":"10.1021/jasms.4c00181","DOIUrl":null,"url":null,"abstract":"<p><p>The type 1 polyketide synthase (PKS) assembly line uses its modular structure to produce polyketide natural products that form the basis of many pharmaceuticals. Currently, several cryoelectron microscopy (cryo-EM) structures of a multidomain PKS module have been constructed, but much remains to be learned. Here we utilize ion-mobility mass spectrometry (IM-MS) to record size and shape information and detect different conformational states of a 207 kDa didomain dimer comprised of ketosynthase (KS) and acyl transferase (AT), excised from full-length module. Furthermore, gas-phase stability differences between these different conformations are captured by collision induced unfolding (CIU) technology. Additionally, through tracking these forms as a function of time, we elucidate a detailed disassembly pathway for KS-AT dimers for the first time.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00181","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The type 1 polyketide synthase (PKS) assembly line uses its modular structure to produce polyketide natural products that form the basis of many pharmaceuticals. Currently, several cryoelectron microscopy (cryo-EM) structures of a multidomain PKS module have been constructed, but much remains to be learned. Here we utilize ion-mobility mass spectrometry (IM-MS) to record size and shape information and detect different conformational states of a 207 kDa didomain dimer comprised of ketosynthase (KS) and acyl transferase (AT), excised from full-length module. Furthermore, gas-phase stability differences between these different conformations are captured by collision induced unfolding (CIU) technology. Additionally, through tracking these forms as a function of time, we elucidate a detailed disassembly pathway for KS-AT dimers for the first time.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives