On the Complexity of Identification in Linear Structural Causal Models

Julian Dörfler, Benito van der Zander, Markus Bläser, Maciej Liskiewicz
{"title":"On the Complexity of Identification in Linear Structural Causal Models","authors":"Julian Dörfler, Benito van der Zander, Markus Bläser, Maciej Liskiewicz","doi":"arxiv-2407.12528","DOIUrl":null,"url":null,"abstract":"Learning the unknown causal parameters of a linear structural causal model is\na fundamental task in causal analysis. The task, known as the problem of\nidentification, asks to estimate the parameters of the model from a combination\nof assumptions on the graphical structure of the model and observational data,\nrepresented as a non-causal covariance matrix. In this paper, we give a new\nsound and complete algorithm for generic identification which runs in\npolynomial space. By standard simulation results, this algorithm has\nexponential running time which vastly improves the state-of-the-art double\nexponential time method using a Gr\\\"obner basis approach. The paper also\npresents evidence that parameter identification is computationally hard in\ngeneral. In particular, we prove, that the task asking whether, for a given\nfeasible correlation matrix, there are exactly one or two or more parameter\nsets explaining the observed matrix, is hard for $\\forall R$, the co-class of\nthe existential theory of the reals. In particular, this problem is\n$coNP$-hard. To our best knowledge, this is the first hardness result for some\nnotion of identifiability.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning the unknown causal parameters of a linear structural causal model is a fundamental task in causal analysis. The task, known as the problem of identification, asks to estimate the parameters of the model from a combination of assumptions on the graphical structure of the model and observational data, represented as a non-causal covariance matrix. In this paper, we give a new sound and complete algorithm for generic identification which runs in polynomial space. By standard simulation results, this algorithm has exponential running time which vastly improves the state-of-the-art double exponential time method using a Gr\"obner basis approach. The paper also presents evidence that parameter identification is computationally hard in general. In particular, we prove, that the task asking whether, for a given feasible correlation matrix, there are exactly one or two or more parameter sets explaining the observed matrix, is hard for $\forall R$, the co-class of the existential theory of the reals. In particular, this problem is $coNP$-hard. To our best knowledge, this is the first hardness result for some notion of identifiability.
论线性结构因果模型识别的复杂性
学习线性结构因果模型的未知因果参数是因果分析中的一项基本任务。这项任务被称为识别问题,要求根据对模型图形结构的假设和观测数据(以非因果协方差矩阵表示)的组合来估计模型参数。在本文中,我们给出了在多项式空间内运行的通用识别的完善算法。根据标准模拟结果,该算法的运行时间为指数时间,大大改进了使用 Gr/Obner 基方法的最先进的双指数时间方法。本文还证明了参数识别在一般情况下很难计算。特别是,我们证明,对于给定的可行相关矩阵,是否有一个或两个或更多的参数集可以解释观察到的矩阵,这个任务对于$\forall R$--实数存在论的同类--来说是很难的。特别是,这个问题是$coNP$难。据我们所知,这是第一个关于可识别性现象的硬度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信