Determinantal Formulas for Rational Perturbations of Multiple Orthogonality Measures

Rostyslav Kozhan, Marcus Vaktnäs
{"title":"Determinantal Formulas for Rational Perturbations of Multiple Orthogonality Measures","authors":"Rostyslav Kozhan, Marcus Vaktnäs","doi":"arxiv-2407.13961","DOIUrl":null,"url":null,"abstract":"In a previous paper, we studied the Christoffel transforms of multiple\northogonal polynomials by means of adding a finitely supported measure to the\nmultiple orthogonality system. This approach was able to handle the Christoffel\ntransforms of the form $(\\Phi\\mu_1,\\dots,\\Phi\\mu_r)$ for a polynomial $\\Phi$,\nwhere $\\Phi\\mu_j$ is the linear functional defined by $$f(x)\\mapsto \\int\nf(x)\\Phi(x)d\\mu_j(x).$$ For these systems we derived determinantal formulas\ngeneralizing Christoffel's classical theorem. In the current paper, we\ngeneralize these formulas to consider the case of rational perturbations\n$$\\Big(\\frac{\\Phi_1}{\\Psi_{1}} \\mu_1,\\dots,\\frac{\\Phi_r}{\\Psi_r}\\mu_r\\Big),$$\nfor any polynomials $\\Phi_1,\\dots,\\Phi_r$ and $\\Psi_1,\\dots,\\Psi_r$. This\nincludes the general Christoffel transforms $(\\Phi_1\\mu_1,\\dots,\\Phi_r\\mu_r)$\nwith $r$ arbitrary polynomials {$\\Phi_1,\\dots,\\Phi_r$,} as well as the\nanalogous Geronimus transforms. This generalizes a theorem of Uvarov to the\nmultiple orthogonality setting. We allow zeros of the numerators and\ndenominators to overlap which permits addition of pure point measure. The\nformulas are derived for multiple orthogonal polynomials of type I and type II\nfor any multi-index.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a previous paper, we studied the Christoffel transforms of multiple orthogonal polynomials by means of adding a finitely supported measure to the multiple orthogonality system. This approach was able to handle the Christoffel transforms of the form $(\Phi\mu_1,\dots,\Phi\mu_r)$ for a polynomial $\Phi$, where $\Phi\mu_j$ is the linear functional defined by $$f(x)\mapsto \int f(x)\Phi(x)d\mu_j(x).$$ For these systems we derived determinantal formulas generalizing Christoffel's classical theorem. In the current paper, we generalize these formulas to consider the case of rational perturbations $$\Big(\frac{\Phi_1}{\Psi_{1}} \mu_1,\dots,\frac{\Phi_r}{\Psi_r}\mu_r\Big),$$ for any polynomials $\Phi_1,\dots,\Phi_r$ and $\Psi_1,\dots,\Psi_r$. This includes the general Christoffel transforms $(\Phi_1\mu_1,\dots,\Phi_r\mu_r)$ with $r$ arbitrary polynomials {$\Phi_1,\dots,\Phi_r$,} as well as the analogous Geronimus transforms. This generalizes a theorem of Uvarov to the multiple orthogonality setting. We allow zeros of the numerators and denominators to overlap which permits addition of pure point measure. The formulas are derived for multiple orthogonal polynomials of type I and type II for any multi-index.
多重正交度量有理扰动的确定性公式
在之前的一篇论文中,我们通过在多正交系统中添加有限支持度量的方法研究了多正交多项式的 Christoffel 变换。这种方法能够处理多项式$\Phi$的$(\Phi\mu_1,\dots,\Phi\mu_r)$形式的克里斯托弗尔变换,其中$\Phi\mu_j$是由$$f(x)\mapsto\intf(x)\Phi(x)d\mu_j(x)定义的线性函数。$$ 对于这些系统,我们从克里斯托弗的经典定理中总结出了行列式公式。在本文中,我们将这些公式推广到考虑有理扰动的情况$$Big(\frac{\Phi_1}{\Psi_{1}} \mu_1、\dots,\frac{\Phi_r}{\Psi_r}\mu_r/Big),$$对于任何多项式$\Phi_1,\dots,\Phi_r$和$\Psi_1,\dots,\Psi_r$.这包括一般的 Christoffel 变换 $(\Phi_1\mu_1,\dots,\Phi_r\mu_r)$与 $r$ 任意多项式 {$Phi_1,\dots,\Phi_r$,} 以及类似的 Geronimus 变换。这将乌瓦洛夫的一个定理推广到了多重正交性环境中。我们允许分子和分母的零点重叠,这就允许增加纯点量。推导出了任意多指数的 I 型和 II 型多重正交多项式的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信