Concentration of Measure and Global Optimization of Bayesian Multilayer Perceptron. Part I

IF 0.8 Q2 MATHEMATICS
B. K. Temyanov, R. R. Nigmatullin
{"title":"Concentration of Measure and Global Optimization of Bayesian Multilayer Perceptron. Part I","authors":"B. K. Temyanov, R. R. Nigmatullin","doi":"10.1134/s1995080224600651","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We present the description of a quasi-spherical coordinate system that is introduced in a space of parameters of a multilayer perceptron with ReLU and Leaky ReLU activation functions. In this instance, a regression loss function that is given in these coordinates becomes the sum of functions that depend on a set of functions defined on a sphere and a quasi-radial coordinate. Conditions for a concentration of measure are satisfied for the functions on the sphere. As a number of parameters tends to infinity, these criteria cause the loss function to concentrate toward a quasi-radially symmetric function.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224600651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present the description of a quasi-spherical coordinate system that is introduced in a space of parameters of a multilayer perceptron with ReLU and Leaky ReLU activation functions. In this instance, a regression loss function that is given in these coordinates becomes the sum of functions that depend on a set of functions defined on a sphere and a quasi-radial coordinate. Conditions for a concentration of measure are satisfied for the functions on the sphere. As a number of parameters tends to infinity, these criteria cause the loss function to concentrate toward a quasi-radially symmetric function.

贝叶斯多层感知器的集中测量和全局优化。第一部分
摘要 我们介绍了一个准球面坐标系,该坐标系被引入到具有 ReLU 和 Leaky ReLU 激活函数的多层感知器的参数空间中。在这种情况下,在这些坐标系中给出的回归损失函数就变成了取决于一组定义在球面和准径向坐标上的函数的总和。球面上的函数满足了度量集中的条件。当参数数趋于无穷大时,这些条件会导致损失函数向准径向对称函数集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信