Detecting secondary spin with extreme mass ratio inspirals in scalar-tensor theory*

IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
Hong Guo, 弘 郭, Chao Zhang, 超 张, Yunqi Liu, 云旗 刘, Rui-Hong Yue, 瑞宏 岳, Yun-Gui Gong, 云贵 龚, Bin Wang and 斌 王
{"title":"Detecting secondary spin with extreme mass ratio inspirals in scalar-tensor theory*","authors":"Hong Guo, 弘 郭, Chao Zhang, 超 张, Yunqi Liu, 云旗 刘, Rui-Hong Yue, 瑞宏 岳, Yun-Gui Gong, 云贵 龚, Bin Wang and 斌 王","doi":"10.1088/1674-1137/ad50ba","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the detectability of the secondary spin in an extreme mass ratio inspiral (EMRI) system within a modified gravity model coupled with a scalar field. The central black hole, which reduces to a Kerr one, is circularly spiralled by a scalar-charged spinning secondary body on the equatorial plane. The analysis reveals that the presence of the scalar field amplifies the secondary spin effect, allowing for a lower limit of the detectability and an improved resolution of the secondary spin when the scalar charge is sufficiently large. Our findings suggest that secondary spin detection is more feasible when the primary mass is not large, and TianQin is the optimal choice for detection.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad50ba","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the detectability of the secondary spin in an extreme mass ratio inspiral (EMRI) system within a modified gravity model coupled with a scalar field. The central black hole, which reduces to a Kerr one, is circularly spiralled by a scalar-charged spinning secondary body on the equatorial plane. The analysis reveals that the presence of the scalar field amplifies the secondary spin effect, allowing for a lower limit of the detectability and an improved resolution of the secondary spin when the scalar charge is sufficiently large. Our findings suggest that secondary spin detection is more feasible when the primary mass is not large, and TianQin is the optimal choice for detection.
用标量张量理论中的极端质量比吸气探测次级自旋*
在这项研究中,我们研究了在一个与标量场耦合的修正引力模型中的极端质量比吸积(EMRI)系统中二次自旋的可探测性。中心黑洞简化为克尔黑洞,在赤道面上被一个带标量电荷的自旋二次天体环绕。分析表明,标量场的存在放大了二次自旋效应,使得二次自旋的可探测性达到下限,并在标量电荷足够大时提高了二次自旋的分辨率。我们的研究结果表明,当原初质量不大时,二次自旋探测更为可行,而天琴是探测的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中国物理C
中国物理C 物理-物理:核物理
CiteScore
6.50
自引率
8.30%
发文量
8976
审稿时长
1.3 months
期刊介绍: Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of: Particle physics; Nuclear physics; Particle and nuclear astrophysics; Cosmology; Accelerator physics. The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication. The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal. The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信