The Vulcan Mission to Io: Lessons Learned during the 2022 JPL Planetary Science Summer School

IF 3.8 Q2 ASTRONOMY & ASTROPHYSICS
K. G. Hanley, Q. McKown, E. M. Cangi, C. Sands, N. North, P. M. Miklavčič, M. S. Bramble, J. M. Bretzfelder, B. D. Byron, J. Caggiano, J. T. Haber, S. J. Laham, D. Morrison-Fogel, K. A. Napier, R. F. Phillips, S. Ray, M. Sandford, P. Sinha, T. Hudson, J. E. C. Scully and L. Lowes
{"title":"The Vulcan Mission to Io: Lessons Learned during the 2022 JPL Planetary Science Summer School","authors":"K. G. Hanley, Q. McKown, E. M. Cangi, C. Sands, N. North, P. M. Miklavčič, M. S. Bramble, J. M. Bretzfelder, B. D. Byron, J. Caggiano, J. T. Haber, S. J. Laham, D. Morrison-Fogel, K. A. Napier, R. F. Phillips, S. Ray, M. Sandford, P. Sinha, T. Hudson, J. E. C. Scully and L. Lowes","doi":"10.3847/psj/ad5841","DOIUrl":null,"url":null,"abstract":"A mission to Jupiter's moon Io, the most volcanically active body in the solar system, was suggested as a priority for the New Frontiers program in the 2013 Planetary Science Decadal Survey. We present a New Frontiers–class mission concept, Vulcan, that was designed as an educational exercise through the Jet Propulsion Laboratory’s 2022 Planetary Science Summer School. Vulcan would leverage an instrument suite consisting of wide- and narrow-angle cameras, a thermal infrared spectrometer, two fluxgate magnetometers, and ion and electron electrostatic analyzers to conduct the most thorough investigation of Io to date. Using 78 flybys over a 2 yr primary science mission, Vulcan would characterize the effects of tidal forces on the differentiation state, crustal structure, and volcanism of Io and investigate potential interactions between Io's volcanoes, surface features, and atmosphere. Although Vulcan was developed as an academic exercise, we show that a New Frontiers–class mission to Io could achieve transformative science in both geophysics and plasma physics, unifying typically disparate subfields of planetary science. A dedicated mission to Io, in combination with the Europa Clipper and Jupiter Icy Moons Explorer missions, would address fundamental questions raised by the 2023 Planetary Science Decadal Survey and could complete our understanding of the spectrum of planetary habitability. Lessons learned from Vulcan could be applied to a New Frontiers 5 Io mission concept in the near future.","PeriodicalId":34524,"journal":{"name":"The Planetary Science Journal","volume":"1 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Planetary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/psj/ad5841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A mission to Jupiter's moon Io, the most volcanically active body in the solar system, was suggested as a priority for the New Frontiers program in the 2013 Planetary Science Decadal Survey. We present a New Frontiers–class mission concept, Vulcan, that was designed as an educational exercise through the Jet Propulsion Laboratory’s 2022 Planetary Science Summer School. Vulcan would leverage an instrument suite consisting of wide- and narrow-angle cameras, a thermal infrared spectrometer, two fluxgate magnetometers, and ion and electron electrostatic analyzers to conduct the most thorough investigation of Io to date. Using 78 flybys over a 2 yr primary science mission, Vulcan would characterize the effects of tidal forces on the differentiation state, crustal structure, and volcanism of Io and investigate potential interactions between Io's volcanoes, surface features, and atmosphere. Although Vulcan was developed as an academic exercise, we show that a New Frontiers–class mission to Io could achieve transformative science in both geophysics and plasma physics, unifying typically disparate subfields of planetary science. A dedicated mission to Io, in combination with the Europa Clipper and Jupiter Icy Moons Explorer missions, would address fundamental questions raised by the 2023 Planetary Science Decadal Survey and could complete our understanding of the spectrum of planetary habitability. Lessons learned from Vulcan could be applied to a New Frontiers 5 Io mission concept in the near future.
前往木卫一的火神任务:在 2022 年 JPL 行星科学暑期学校期间吸取的经验教训
木星的卫星木卫一是太阳系中火山最活跃的天体,2013年行星科学十年调查建议将木卫一任务作为 "新疆域 "计划的优先事项。我们提出了一个 "新前沿 "级任务概念--"火神"(Vulcan),它是喷气推进实验室2022年行星科学暑期班的一项教育活动。火神号将利用由广角和窄角相机、热红外光谱仪、两个磁通门磁力计以及离子和电子静电分析仪组成的仪器套件,对木卫一进行迄今为止最彻底的调查。在为期两年的主要科学任务中,谷神星将进行 78 次飞越,以确定潮汐力对木卫二的分化状态、地壳结构和火山活动的影响,并研究木卫二火山、地表特征和大气之间的潜在相互作用。虽然 "火神 "号是作为一项学术活动开发的,但我们表明,对木卫一的 "新领域 "级飞行任务可以在地球物理学和等离子体物理学方面实现变革性科学,将行星科学中通常互不相关的子领域统一起来。木卫一专项任务与欧罗巴快船和木星冰月探测器任务相结合,将解决2023年行星科学十年调查提出的基本问题,并能完善我们对行星宜居性范围的理解。从 "火神 "号吸取的经验教训可在不久的将来应用于 "新境界5号 "木卫一任务概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Planetary Science Journal
The Planetary Science Journal Earth and Planetary Sciences-Geophysics
CiteScore
5.20
自引率
0.00%
发文量
249
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信