Path factors in bipartite graphs from size or spectral radius

IF 0.9 3区 数学 Q2 MATHEMATICS
Yifang Hao, Shuchao Li
{"title":"Path factors in bipartite graphs from size or spectral radius","authors":"Yifang Hao,&nbsp;Shuchao Li","doi":"10.1007/s00010-024-01107-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a graph and let <span>\\(P_n\\)</span> be a path on <i>n</i> vertices. A spanning subgraph <i>H</i> of <i>G</i> is called a <span>\\(\\{P_{3},P_{4},P_{5}\\}\\)</span>-factor if every component of <i>H</i> is one of <span>\\(P_3,\\, P_4\\)</span> and <span>\\(P_5\\)</span>. In 1994, Wang (J Graph Theory 18(2):161–167, 1994) gave a sufficient and necessary condition to ensure that a bipartite graph contains a <span>\\(\\{P_{3},P_{4},P_{5}\\}\\)</span>-factor. In this paper, we use an equivalent form of Wang-type condition to establish two sufficient conditions to ensure that there exists a <span>\\(\\{P_{3},P_{4},P_{5}\\}\\)</span>-factor in a connected bipartite graph, in which one is based on the size, the other is based on the spectral radius of the bipartite graph.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01107-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph and let \(P_n\) be a path on n vertices. A spanning subgraph H of G is called a \(\{P_{3},P_{4},P_{5}\}\)-factor if every component of H is one of \(P_3,\, P_4\) and \(P_5\). In 1994, Wang (J Graph Theory 18(2):161–167, 1994) gave a sufficient and necessary condition to ensure that a bipartite graph contains a \(\{P_{3},P_{4},P_{5}\}\)-factor. In this paper, we use an equivalent form of Wang-type condition to establish two sufficient conditions to ensure that there exists a \(\{P_{3},P_{4},P_{5}\}\)-factor in a connected bipartite graph, in which one is based on the size, the other is based on the spectral radius of the bipartite graph.

Abstract Image

Abstract Image

从大小或谱半径看二方形图中的路径因子
让 G 是一个图,让 \(P_n\) 是 n 个顶点上的一条路径。如果 H 的每个分量都是\(P_3,\, P_4\) 和\(P_5\)中的一个,那么 G 的一个跨子图 H 就叫做一个\(\{P_{3},P_{4},P_{5}\)因子。)1994 年,Wang(《图论》18(2):161-167, 1994)给出了一个充分条件和必要条件,以确保一个双方图包含一个 (\({P_{3},P_{4},P_{5}\})因子。在本文中,我们利用王式条件的等价形式建立了两个充分条件,以确保在连通的双artite图中存在一个(\({P_{3},P_{4},P_{5}\})因子,其中一个条件基于双artite图的大小,另一个条件基于双artite图的谱半径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信