Integrability in Perturbed Black Holes: Background Hidden Structures

José Luis Jaramillo, Michele Lenzi, Carlos F. Sopuerta
{"title":"Integrability in Perturbed Black Holes: Background Hidden Structures","authors":"José Luis Jaramillo, Michele Lenzi, Carlos F. Sopuerta","doi":"arxiv-2407.14196","DOIUrl":null,"url":null,"abstract":"In this work we investigate the presence of integrable hidden structures in\nthe dynamics of perturbed non-rotating black holes (BHs). This can also be\nconsidered as a first step in a wider program of an effective identification of\n``slow'' and ``fast'' degrees of freedom (DoFs) in the (binary) BH dynamics,\nfollowing a wave-mean flow perspective. The slow DoFs would be associated with\na nonlinear integrable dynamics, on which the fast ones propagate following an\neffective linear dynamics. BH perturbation theory offers a natural ground to\ntest these properties. Indeed, the decoupling of Einstein equations into wave\nmaster equations with a potential provides an instance of such splitting into\n(frozen) slow DoFs (background potential) over which the linear dynamics of the\nfast ones (perturbation master functions) evolve. It has been recently shown\nthat these wave equations possess an infinite number of symmetries that\ncorrespond to the flow of the infinite hierarchy of Korteweg-de Vries (KdV)\nequations. Starting from these results, we systematically investigate the\npresence of integrable structures in BH perturbation theory. We first study\nthem in Cauchy slices and then extend the analysis to hyperboloidal foliations.\nThis second step introduces a splitting of the master equation into bulk and\nboundary contributions, unveiling an underlying structural relation with the\nslow and fast DoFs. This insight represents a first step to establish the\nintegrable structures associated to the slow DoFs as bulk symmetries of the\ndynamics of perturbed BHs.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we investigate the presence of integrable hidden structures in the dynamics of perturbed non-rotating black holes (BHs). This can also be considered as a first step in a wider program of an effective identification of ``slow'' and ``fast'' degrees of freedom (DoFs) in the (binary) BH dynamics, following a wave-mean flow perspective. The slow DoFs would be associated with a nonlinear integrable dynamics, on which the fast ones propagate following an effective linear dynamics. BH perturbation theory offers a natural ground to test these properties. Indeed, the decoupling of Einstein equations into wave master equations with a potential provides an instance of such splitting into (frozen) slow DoFs (background potential) over which the linear dynamics of the fast ones (perturbation master functions) evolve. It has been recently shown that these wave equations possess an infinite number of symmetries that correspond to the flow of the infinite hierarchy of Korteweg-de Vries (KdV) equations. Starting from these results, we systematically investigate the presence of integrable structures in BH perturbation theory. We first study them in Cauchy slices and then extend the analysis to hyperboloidal foliations. This second step introduces a splitting of the master equation into bulk and boundary contributions, unveiling an underlying structural relation with the slow and fast DoFs. This insight represents a first step to establish the integrable structures associated to the slow DoFs as bulk symmetries of the dynamics of perturbed BHs.
扰动黑洞中的积分性:背景隐藏结构
在这项工作中,我们研究了扰动非旋转黑洞(BHs)动力学中存在的可积分隐藏结构。从波均流的角度来看,这也可以被视为有效识别(二元)黑洞动力学中 "慢 "和 "快 "自由度(DoFs)的更广泛计划的第一步。慢自由度与非线性可积分动力学相关联,而快自由度则按照有效的线性动力学传播。BH扰动理论为检验这些特性提供了天然的基础。事实上,将爱因斯坦方程解耦为带势能的波主方程就提供了这样一个实例:将爱因斯坦方程分裂为(冻结的)慢DoFs(背景势能),在这些DoFs上,快DoFs(扰动主函数)的线性动力学不断发展。最近的研究表明,这些波方程具有无限多的对称性,这些对称性与 Korteweg-de Vries(KdV)方程的无限层次流相对应。从这些结果出发,我们系统地研究了 BH 微扰理论中可积分结构的存在。我们首先在考奇切片中对它们进行研究,然后将分析扩展到超环形叶状结构。第二步将主方程拆分为体贡献和边界贡献,揭示了与慢速和快速 DoFs 的潜在结构关系。这一洞察力是建立与慢速 DoFs 相关的可积分结构的第一步,它是受扰动 BH 动力学的体对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信