{"title":"Managing Concurrent Interactions in Online Time Slot Booking Systems for Attended Home Delivery","authors":"Thomas R. Visser, Niels Agatz, Remy Spliet","doi":"10.1287/trsc.2022.0445","DOIUrl":null,"url":null,"abstract":"Many goods and services require the customer to be at home to receive the delivery. In the context of attended home delivery, customers can typically choose from a menu of delivery time slots. We consider the problem of dynamically managing the offered time slots and delivery bookings given the available fleet capacity. When multiple customers interact with the online booking system at the same time, this can lead to conflicts. Although managing such concurrent interactions is an important challenge in attended home delivery systems, it has not yet been addressed in the literature. We present a concurrency control strategy and several fast route planning approaches to manage time slots in real time. To combine fast response times with high quality slotting decisions, we introduce background procedures that use the time between successive order placements to improve the performance of the time slot offer and validation procedures. Our detailed computational experiments based on realistic instances provide insights into the effectiveness of our background procedures and the complex trade-offs between waiting times, valid orders, and invalid orders. We also discuss several relevant new areas of research in concurrency control for time slot management.Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant 438-213-204]. It is co-funded by ORTEC B.V. and AH.nl.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"47 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0445","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Many goods and services require the customer to be at home to receive the delivery. In the context of attended home delivery, customers can typically choose from a menu of delivery time slots. We consider the problem of dynamically managing the offered time slots and delivery bookings given the available fleet capacity. When multiple customers interact with the online booking system at the same time, this can lead to conflicts. Although managing such concurrent interactions is an important challenge in attended home delivery systems, it has not yet been addressed in the literature. We present a concurrency control strategy and several fast route planning approaches to manage time slots in real time. To combine fast response times with high quality slotting decisions, we introduce background procedures that use the time between successive order placements to improve the performance of the time slot offer and validation procedures. Our detailed computational experiments based on realistic instances provide insights into the effectiveness of our background procedures and the complex trade-offs between waiting times, valid orders, and invalid orders. We also discuss several relevant new areas of research in concurrency control for time slot management.Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Grant 438-213-204]. It is co-funded by ORTEC B.V. and AH.nl.
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.