Variance of the distance to the boundary of convex domains in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$

Alastair N. Fletcher, Alexander G. Fletcher
{"title":"Variance of the distance to the boundary of convex domains in $\\mathbb{R}^{2}$ and $\\mathbb{R}^{3}$","authors":"Alastair N. Fletcher, Alexander G. Fletcher","doi":"arxiv-2407.12041","DOIUrl":null,"url":null,"abstract":"In this paper, we give for the first time a systematic study of the variance\nof the distance to the boundary for arbitrary bounded convex domains in\n$\\mathbb{R}^2$ and $\\mathbb{R}^3$. In dimension two, we show that this function\nis strictly convex, which leads to a new notion of the centre of such a domain,\ncalled the variocentre. In dimension three, we investigate the relationship\nbetween the variance and the distance to the boundary, which mathematically\njustifies claims made for a recently developed algorithm for classifying\ninterior and exterior points with applications in biology.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give for the first time a systematic study of the variance of the distance to the boundary for arbitrary bounded convex domains in $\mathbb{R}^2$ and $\mathbb{R}^3$. In dimension two, we show that this function is strictly convex, which leads to a new notion of the centre of such a domain, called the variocentre. In dimension three, we investigate the relationship between the variance and the distance to the boundary, which mathematically justifies claims made for a recently developed algorithm for classifying interior and exterior points with applications in biology.
$\mathbb{R}^{2}$和$\mathbb{R}^{3}$中凸域边界距离的方差
在本文中,我们首次系统地研究了$\mathbb{R}^2$和$\mathbb{R}^3$中任意有界凸域到边界距离的方差。在维度二中,我们证明了这个函数是严格凸的,从而得出了这样一个域的中心的新概念,称为变心。在三维空间中,我们研究了方差与边界距离之间的关系,这在数学上证明了最近开发的一种用于分类内部点和外部点的算法在生物学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信