Global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation

IF 0.6 3区 数学 Q3 MATHEMATICS
Jia Shen, Yifei Wu
{"title":"Global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation","authors":"Jia Shen, Yifei Wu","doi":"10.4310/mrl.2023.v30.n6.a10","DOIUrl":null,"url":null,"abstract":"In this paper, we study the global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation. Recently, Dodson $\\href{https://dx.doi.org/10.4171/RMI/1295}{\\textrm{[16]}}$ studied the global well-posedness in a critical Sobolev space $\\dot{W}^{11/7,7/6}$. In this paper, we aim to show that if the initial data belongs to $\\dot{H}^{\\frac{1}{2}}$ to guarantee the local existence, then some extra weak space which is supercritical, is sufficient to prove the global well-posedness. More precisely, we prove that if the initial data belongs to $\\dot{H}^{1/2} \\cap \\dot{W}^{s,1}$ for $12/13 \\lt s \\leqslant 1$, then the corresponding solution exists globally and scatters.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a10","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the global well-posedness and scattering of 3D defocusing, cubic Schrödinger equation. Recently, Dodson $\href{https://dx.doi.org/10.4171/RMI/1295}{\textrm{[16]}}$ studied the global well-posedness in a critical Sobolev space $\dot{W}^{11/7,7/6}$. In this paper, we aim to show that if the initial data belongs to $\dot{H}^{\frac{1}{2}}$ to guarantee the local existence, then some extra weak space which is supercritical, is sufficient to prove the global well-posedness. More precisely, we prove that if the initial data belongs to $\dot{H}^{1/2} \cap \dot{W}^{s,1}$ for $12/13 \lt s \leqslant 1$, then the corresponding solution exists globally and scatters.
三维散焦立方薛定谔方程的全局拟合与散射
本文研究了三维离焦立方薛定谔方程的全局好拟性和散射问题。最近,Dodson $\href{https://dx.doi.org/10.4171/RMI/1295}{textrm{[16]}}$ 研究了临界 Sobolev 空间 $\dot{W}^{11/7,7/6}$ 中的全局好摆性。本文旨在证明,如果初始数据属于$\dot{H}^{frac{1}{2}}$以保证局部存在,那么一些额外的超临界弱空间就足以证明全局良好性。更准确地说,我们证明了如果初始数据属于 $\dot{H}^{1/2} \cap \dot{W}^{s,1}$ 中的 $12/13 \lt s \leqslant 1$,那么相应的解在全局上存在并且是分散的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信