Parametrized Kähler class and Zariski dense orbital 1-cohomology

IF 0.6 3区 数学 Q3 MATHEMATICS
Filippo Sarti, Alessio Savini
{"title":"Parametrized Kähler class and Zariski dense orbital 1-cohomology","authors":"Filippo Sarti, Alessio Savini","doi":"10.4310/mrl.2023.v30.n6.a9","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a finitely generated group and let $(X,\\mu_X)$ be an ergodic standard Borel probability $\\Gamma$-space. Suppose that $\\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\\operatorname{Isom}(\\mathcal{X})^{\\circ}$ is simple. Given a Zariski dense measurable cocycle $\\sigma:\\Gamma \\times X \\to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.","PeriodicalId":49857,"journal":{"name":"Mathematical Research Letters","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Research Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Gamma$ be a finitely generated group and let $(X,\mu_X)$ be an ergodic standard Borel probability $\Gamma$-space. Suppose that $\mathcal{X}$ is a Hermitian symmetric space not of tube type and assume that $G=\operatorname{Isom}(\mathcal{X})^{\circ}$ is simple. Given a Zariski dense measurable cocycle $\sigma:\Gamma \times X \to G$, we define the notion of parametrized Kähler class and we show that it completely determines the cocycle up to cohomology.
参数化凯勒类和扎里斯基密集轨道 1-同调
让 $\Gamma$ 是一个有限生成的群,让 $(X,\mu_X)$ 是一个遍历标准伯尔概率 $\Gamma$ 空间。假设$(X,\mu_X)$ 是一个不属于管型的赫米蒂对称空间,并假设$G=\operatorname{Isom}(\mathcal{X})^{\circ}$ 是简单的。给定一个扎里斯基密集可测环 $\sigma:\Gamma \times X \to G$,我们定义了参数化凯勒类的概念,并证明它完全决定了这个环的同调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
9
审稿时长
6.0 months
期刊介绍: Dedicated to publication of complete and important papers of original research in all areas of mathematics. Expository papers and research announcements of exceptional interest are also occasionally published. High standards are applied in evaluating submissions; the entire editorial board must approve the acceptance of any paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信