Gluck twists on concordant or homotopic spheres

Pub Date : 2024-07-17 DOI:10.4310/mrl.2023.v30.n6.a6
Daniel Kasprowski, Mark Powell, Arunima Ray
{"title":"Gluck twists on concordant or homotopic spheres","authors":"Daniel Kasprowski, Mark Powell, Arunima Ray","doi":"10.4310/mrl.2023.v30.n6.a6","DOIUrl":null,"url":null,"abstract":"Let $M$ be a compact 4-manifold and let $S$ and $T$ be embedded $2$-spheres in $M$, both with trivial normal bundle. We write $M_{S}$ and $M_T$ for the 4-manifolds obtained by the Gluck twist operation on $M$ along $S$ and $T$ respectively. We show that if $S$ and $T$ are concordant, then $M_S$ and $M_T$ are $s$-cobordant, and so if $\\pi_1(M)$ is good, then $M_S$ and $M_T$ are homeomorphic. Similarly, if $S$ and $T$ are homotopic then we show that $M_S$ and $M_T$ are simple homotopy equivalent.Under some further assumptions, we deduce th $M_S$ and $M_T$ are homeomorphic. We show that additional assumptions are necessary by giving an example where $S$ and $T$ are homotopic but $M_S$ and $M_T$ are not homeomorphic. We also give an example where $S$ and $T$ are homotopic and $M_S$ and $M_T$ are homeomorphic but not diffeomorphic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/mrl.2023.v30.n6.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $M$ be a compact 4-manifold and let $S$ and $T$ be embedded $2$-spheres in $M$, both with trivial normal bundle. We write $M_{S}$ and $M_T$ for the 4-manifolds obtained by the Gluck twist operation on $M$ along $S$ and $T$ respectively. We show that if $S$ and $T$ are concordant, then $M_S$ and $M_T$ are $s$-cobordant, and so if $\pi_1(M)$ is good, then $M_S$ and $M_T$ are homeomorphic. Similarly, if $S$ and $T$ are homotopic then we show that $M_S$ and $M_T$ are simple homotopy equivalent.Under some further assumptions, we deduce th $M_S$ and $M_T$ are homeomorphic. We show that additional assumptions are necessary by giving an example where $S$ and $T$ are homotopic but $M_S$ and $M_T$ are not homeomorphic. We also give an example where $S$ and $T$ are homotopic and $M_S$ and $M_T$ are homeomorphic but not diffeomorphic.
分享
查看原文
协球或同位球上的格鲁克捻转
假设 $M$ 是一个紧凑的 4-manifold,假设 $S$ 和 $T$ 是嵌入 $M$ 的 2$球体,两者都有微不足道的法向束。我们分别用 $M_{S}$ 和 $M_T$ 表示对 $M$ 沿 $S$ 和 $T$ 进行格鲁克扭转操作后得到的 4-manifold。我们证明,如果 $S$ 和 $T$ 是协整的,那么 $M_S$ 和 $M_T$ 就是 $s$ 协整的,因此如果 $\pi_1(M)$ 是好的,那么 $M_S$ 和 $M_T$ 就是同构的。同样,如果 $S$ 和 $T$ 是同构的,那么我们证明 $M_S$ 和 $M_T$ 是简单同构等价的。我们通过举例说明额外的假设是必要的,即$S$和$T$是同构的,但$M_S$和$M_T$不是同构的。我们还举例说明$S$和$T$是同构的,而$M_S$和$M_T$是同构的,但不是差分同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信