Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation

Siddartha Reddy N, Sai Prakash MV, Varun V, Vishal Vaddina, Saisubramaniam Gopalakrishnan
{"title":"Leveraging Latent Evolutionary Optimization for Targeted Molecule Generation","authors":"Siddartha Reddy N, Sai Prakash MV, Varun V, Vishal Vaddina, Saisubramaniam Gopalakrishnan","doi":"arxiv-2407.13779","DOIUrl":null,"url":null,"abstract":"Lead optimization is a pivotal task in the drug design phase within the drug\ndiscovery lifecycle. The primary objective is to refine the lead compound to\nmeet specific molecular properties for progression to the subsequent phase of\ndevelopment. In this work, we present an innovative approach, Latent\nEvolutionary Optimization for Molecule Generation (LEOMol), a generative\nmodeling framework for the efficient generation of optimized molecules. LEOMol\nleverages Evolutionary Algorithms, such as Genetic Algorithm and Differential\nEvolution, to search the latent space of a Variational AutoEncoder (VAE). This\nsearch facilitates the identification of the target molecule distribution\nwithin the latent space. Our approach consistently demonstrates superior\nperformance compared to previous state-of-the-art models across a range of\nconstrained molecule generation tasks, outperforming existing models in all\nfour sub-tasks related to property targeting. Additionally, we suggest the\nimportance of including toxicity in the evaluation of generative models.\nFurthermore, an ablation study underscores the improvements that our approach\nprovides over gradient-based latent space optimization methods. This\nunderscores the effectiveness and superiority of LEOMol in addressing the\ninherent challenges in constrained molecule generation while emphasizing its\npotential to propel advancements in drug discovery.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lead optimization is a pivotal task in the drug design phase within the drug discovery lifecycle. The primary objective is to refine the lead compound to meet specific molecular properties for progression to the subsequent phase of development. In this work, we present an innovative approach, Latent Evolutionary Optimization for Molecule Generation (LEOMol), a generative modeling framework for the efficient generation of optimized molecules. LEOMol leverages Evolutionary Algorithms, such as Genetic Algorithm and Differential Evolution, to search the latent space of a Variational AutoEncoder (VAE). This search facilitates the identification of the target molecule distribution within the latent space. Our approach consistently demonstrates superior performance compared to previous state-of-the-art models across a range of constrained molecule generation tasks, outperforming existing models in all four sub-tasks related to property targeting. Additionally, we suggest the importance of including toxicity in the evaluation of generative models. Furthermore, an ablation study underscores the improvements that our approach provides over gradient-based latent space optimization methods. This underscores the effectiveness and superiority of LEOMol in addressing the inherent challenges in constrained molecule generation while emphasizing its potential to propel advancements in drug discovery.
利用潜在进化优化技术生成靶向分子
先导化合物优化是药物发现生命周期中药物设计阶段的一项关键任务。其主要目的是完善先导化合物,使其符合特定的分子特性,以便进入后续的开发阶段。在这项工作中,我们提出了一种创新方法--分子生成的潜伏进化优化(LEOMol),这是一种高效生成优化分子的生成模型框架。LEOMol 利用遗传算法和差分进化等进化算法来搜索变异自动编码器(VAE)的潜在空间。这种搜索有助于识别潜在空间中的目标分子分布。在一系列受限分子生成任务中,我们的方法与以前的先进模型相比始终表现出更优越的性能,在与属性靶向相关的所有四个子任务中,我们的方法都优于现有模型。此外,我们还提出了将毒性纳入生成模型评估的重要性。此外,一项消融研究强调了我们的方法比基于梯度的潜空间优化方法所带来的改进。这证明了 LEOMol 在解决受限分子生成中固有挑战方面的有效性和优越性,同时强调了它在推动药物发现进步方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信