Therapeutic Smart Insole Technology with Archimedean Algorithmic Spiral Triboelectric Nanogenerator-Based Power System and Sensors

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alfred Mensah, Shiqin Liao, Jeremiah Amesimeku, Jie Li, Yajun Chen, Yi Hao, Jixing Yang, Qingqing Wang, Fenglin Huang, Yun Liu, Qufu Wei, Pengfei Lv
{"title":"Therapeutic Smart Insole Technology with Archimedean Algorithmic Spiral Triboelectric Nanogenerator-Based Power System and Sensors","authors":"Alfred Mensah,&nbsp;Shiqin Liao,&nbsp;Jeremiah Amesimeku,&nbsp;Jie Li,&nbsp;Yajun Chen,&nbsp;Yi Hao,&nbsp;Jixing Yang,&nbsp;Qingqing Wang,&nbsp;Fenglin Huang,&nbsp;Yun Liu,&nbsp;Qufu Wei,&nbsp;Pengfei Lv","doi":"10.1007/s42765-024-00443-3","DOIUrl":null,"url":null,"abstract":"<div><p>Clinical diagnosis and early intervention employ pedobarometry, which analyzes gait, posture, and foot health. Athletes utilize smart insoles to track step count, distance, and other parameters to improve performance. Current sensor platforms are bulky and limited to indoor or clinical environments, despite the trend of developing specialized insoles for recuperation and therapy. Hence, we presented a fully flexible, typically portable, and multi-functional insole monitoring technology powered by Archimedean algorithmic spiral TENG-based power system strictly produced from biopolymers such as bacterial cellulose, conjugate-blend of polydimethylsiloxane (PDMS), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and more. Along with exceptional mechanical and electrical performance [current density (<i>J</i><sub>SC</sub>) ≈ 40–50 μA/cm<sup>2</sup> and power density (<i>P</i><sub>D</sub>) ≈ 500–600 μW/cm<sup>2</sup>], the smart insole system exhibited good sensor-human foot interfacial analysis results, proving to be capable of biomechanical analysis of gait, posture, and many other podiatry-related conditions, albeit being soft, portable, and having compatibility potential for IoT integration.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1746 - 1764"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00443-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical diagnosis and early intervention employ pedobarometry, which analyzes gait, posture, and foot health. Athletes utilize smart insoles to track step count, distance, and other parameters to improve performance. Current sensor platforms are bulky and limited to indoor or clinical environments, despite the trend of developing specialized insoles for recuperation and therapy. Hence, we presented a fully flexible, typically portable, and multi-functional insole monitoring technology powered by Archimedean algorithmic spiral TENG-based power system strictly produced from biopolymers such as bacterial cellulose, conjugate-blend of polydimethylsiloxane (PDMS), poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), and more. Along with exceptional mechanical and electrical performance [current density (JSC) ≈ 40–50 μA/cm2 and power density (PD) ≈ 500–600 μW/cm2], the smart insole system exhibited good sensor-human foot interfacial analysis results, proving to be capable of biomechanical analysis of gait, posture, and many other podiatry-related conditions, albeit being soft, portable, and having compatibility potential for IoT integration.

Graphical Abstract

Abstract Image

基于阿基米德算法螺旋三电纳米发电机动力系统和传感器的治疗性智能鞋垫技术
临床诊断和早期干预采用足部测量法,该方法可分析步态、姿势和足部健康状况。运动员利用智能鞋垫追踪步数、距离和其他参数,以提高运动成绩。目前的传感器平台非常笨重,而且仅限于室内或临床环境,尽管开发用于康复和治疗的专用鞋垫是大势所趋。因此,我们提出了一种完全灵活、便携式的多功能鞋垫监测技术,该技术由基于阿基米德算法的螺旋腾博会诚信为本动力系统驱动,严格采用生物聚合物(如细菌纤维素、聚二甲基硅氧烷(PDMS)的共轭混合物、聚(3,4-亚乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)等)制成。除了卓越的机械和电气性能[电流密度(JSC)≈ 40-50 μA/cm2,功率密度(PD)≈ 500-600 μW/cm2]之外,智能鞋垫系统还展示了良好的传感器-人脚界面分析结果,证明它能够对步态、姿势和许多其他足病相关情况进行生物力学分析,而且柔软、便携,具有物联网集成的兼容性潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信