{"title":"Anti-OTC antibody-conjugated fluorescent magnetic/silica and fluorescent hybrid silica nanoparticles for oxytetracycline detection","authors":"Viswanathan Kaliyaperumal, Fatimah Oleyan Al-Otibi, Ruth Sophila John, Raedah Ibrahim Alharbi, Dhinakar Raj Gopal","doi":"10.1515/chem-2024-0066","DOIUrl":null,"url":null,"abstract":"This study presents two alternative fluorescent nanoparticle-based oxytetracycline (OTC) detection methods in milk samples. Rhodamine 6G-coated fluorescent hybrid silica nanoparticles and fluorescent magnetic/silica nanoparticles functionalized with anti-OTC antibodies were used in this test. The sandwich test format was utilized to compare anti-OTC antibody-conjugated fluorescent magnetic/silica nanoparticles with OTC/OTC antibody-conjugated fluorescent hybrid silica nanoparticles in an Eppendorf tube with magnetic separators. The magnetic separator helps to quickly retain all of the OTC captured by fluorescent magnetic core–shell nanoparticles in the milk sample. As a result, the assay time was dramatically shortened. The obtained linear range was 1.34 × 10<jats:sup>−6</jats:sup> to 2.10 × 10<jats:sup>−8</jats:sup> (M) (<jats:italic>R</jats:italic> <jats:sup>2</jats:sup> = 0.9954), the detection limit was 4.76 ng/mL, and the total assay time was 90 min. This approach was used to determine the OTC concentration in milk samples, and the maximum percentage (%) of interference was less than 3.0%, with a recovery rate of greater than 97.0%. This approach offers a high potential for residue detection in milk samples. With a total analysis period of less than 90 min, this approach provided the best way to determine the capture and detector nanoparticles’ response.","PeriodicalId":19520,"journal":{"name":"Open Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/chem-2024-0066","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents two alternative fluorescent nanoparticle-based oxytetracycline (OTC) detection methods in milk samples. Rhodamine 6G-coated fluorescent hybrid silica nanoparticles and fluorescent magnetic/silica nanoparticles functionalized with anti-OTC antibodies were used in this test. The sandwich test format was utilized to compare anti-OTC antibody-conjugated fluorescent magnetic/silica nanoparticles with OTC/OTC antibody-conjugated fluorescent hybrid silica nanoparticles in an Eppendorf tube with magnetic separators. The magnetic separator helps to quickly retain all of the OTC captured by fluorescent magnetic core–shell nanoparticles in the milk sample. As a result, the assay time was dramatically shortened. The obtained linear range was 1.34 × 10−6 to 2.10 × 10−8 (M) (R2 = 0.9954), the detection limit was 4.76 ng/mL, and the total assay time was 90 min. This approach was used to determine the OTC concentration in milk samples, and the maximum percentage (%) of interference was less than 3.0%, with a recovery rate of greater than 97.0%. This approach offers a high potential for residue detection in milk samples. With a total analysis period of less than 90 min, this approach provided the best way to determine the capture and detector nanoparticles’ response.
期刊介绍:
Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. The central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field. The journal is the premier source for cutting edge research in fundamental chemistry and it provides high quality peer review services for its authors across the world. Moreover, it allows for libraries everywhere to avoid subscribing to multiple local publications, and to receive instead all the necessary chemistry research from a single source available to the entire scientific community.