Giovanni L. Guardo, Giuseppe G. Rapisarda, Dimiter L. Balabanski, Giuseppe D’Agata, Alessia Di Pietro, Pierpaolo Figuera, Marco La Cognata, Marco La Commara, Livio Lamia, Dario Lattuada, Catalin Matei, Marco Mazzocco, Alessandro A. Oliva, Sara Palmerini, Teodora Petruse, Rosario G. Pizzone, Stefano Romano, Maria Letizia Sergi, Roberta Spartá, X. D. Su, Aurora Tumino, Nikola Vukman
{"title":"Direct and Indirect Measurements of the 19F(p,α)16O Reaction at Astrophysical Energies Using the LHASA Detector and the Trojan Horse Method","authors":"Giovanni L. Guardo, Giuseppe G. Rapisarda, Dimiter L. Balabanski, Giuseppe D’Agata, Alessia Di Pietro, Pierpaolo Figuera, Marco La Cognata, Marco La Commara, Livio Lamia, Dario Lattuada, Catalin Matei, Marco Mazzocco, Alessandro A. Oliva, Sara Palmerini, Teodora Petruse, Rosario G. Pizzone, Stefano Romano, Maria Letizia Sergi, Roberta Spartá, X. D. Su, Aurora Tumino, Nikola Vukman","doi":"10.3390/universe10070304","DOIUrl":null,"url":null,"abstract":"Fluorine is one of the most interesting elements in nuclear astrophysics. Its abundance can provide important hints to constrain the stellar models since fluorine production and destruction are strictly connected to the physical conditions inside the stars. The 19F(p,α)16O reaction is one of the fluorine burning processes and the correction evaluation of its reaction rate is of pivotal importance to evaluate the fluorine abundance. Moreover, the 19F(p,α)16O reaction rate can have an impact for the production of calcium in the first-generation of Population III stars. Here, we present the AsFiN collaboration efforts to the study of the 19F(p,α)16O reaction by means of direct and indirect measurements. On the direct measurements side, an experimental campaign aimed to the measurement of the 19F(p,α0,π)16O reaction is ongoing, taking advantage of the new versatile arrays of silicon strip detectors, LHASA and ELISSA. Moreover, the Trojan Horse Method (THM) was used to determine the 19F(p,α0)16O reaction S(E)-factor in the energy range of astrophysical interest (Ecm≈ 0–1 MeV), showing, for the first time, the presence of resonant structures within the astrophysical energy range. THM has been also applied for the study of the 19F(p,απ)16O reaction; data analysis is ongoing.","PeriodicalId":48646,"journal":{"name":"Universe","volume":"27 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10070304","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorine is one of the most interesting elements in nuclear astrophysics. Its abundance can provide important hints to constrain the stellar models since fluorine production and destruction are strictly connected to the physical conditions inside the stars. The 19F(p,α)16O reaction is one of the fluorine burning processes and the correction evaluation of its reaction rate is of pivotal importance to evaluate the fluorine abundance. Moreover, the 19F(p,α)16O reaction rate can have an impact for the production of calcium in the first-generation of Population III stars. Here, we present the AsFiN collaboration efforts to the study of the 19F(p,α)16O reaction by means of direct and indirect measurements. On the direct measurements side, an experimental campaign aimed to the measurement of the 19F(p,α0,π)16O reaction is ongoing, taking advantage of the new versatile arrays of silicon strip detectors, LHASA and ELISSA. Moreover, the Trojan Horse Method (THM) was used to determine the 19F(p,α0)16O reaction S(E)-factor in the energy range of astrophysical interest (Ecm≈ 0–1 MeV), showing, for the first time, the presence of resonant structures within the astrophysical energy range. THM has been also applied for the study of the 19F(p,απ)16O reaction; data analysis is ongoing.
UniversePhysics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍:
Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.