{"title":"Terahertz Radiation from Water Molecules Rotated by Femtosecond Laser Field","authors":"Yezi Pu, Xiao-Yu Peng, Xuan Shi, Hongquan Zhao","doi":"10.1007/s10762-024-01000-0","DOIUrl":null,"url":null,"abstract":"<p>THz radiation can be generated routinely from water plasmas by focusing femtosecond laser pulses on a water film or water line. However, there are no relevant reports on the THz generation from rotated water molecules driven directly by strong electric field of femtosecond laser pulses under non-plasma condition. Here, we develop a theoretical model of water molecules to study the interaction between laser electric field and water molecules based on quantum mechanics theory. We find that broadband THz radiation (bandwidth ~ 10 THz) can be generated through the transitions of rotational energy levels of the rotated water molecules driven by a linear polarization mid-infrared laser (laser intensity ≤ 10<sup>12</sup> W∙cm<sup>−2</sup>). We demonstrate that the generated THz spectrum can be controlled by changing the laser intensity and its pulse duration. Moreover, for a Gaussian pump laser beam, the high-frequency components of THz wave increase gradually, while the low-frequency components decrease gradually when the laser pulse duration increases from 150 to 400 fs. Our results provide a new idea and possibility for THz generation from water.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"39 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-01000-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
THz radiation can be generated routinely from water plasmas by focusing femtosecond laser pulses on a water film or water line. However, there are no relevant reports on the THz generation from rotated water molecules driven directly by strong electric field of femtosecond laser pulses under non-plasma condition. Here, we develop a theoretical model of water molecules to study the interaction between laser electric field and water molecules based on quantum mechanics theory. We find that broadband THz radiation (bandwidth ~ 10 THz) can be generated through the transitions of rotational energy levels of the rotated water molecules driven by a linear polarization mid-infrared laser (laser intensity ≤ 1012 W∙cm−2). We demonstrate that the generated THz spectrum can be controlled by changing the laser intensity and its pulse duration. Moreover, for a Gaussian pump laser beam, the high-frequency components of THz wave increase gradually, while the low-frequency components decrease gradually when the laser pulse duration increases from 150 to 400 fs. Our results provide a new idea and possibility for THz generation from water.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.