An integral sliding-mode observer-based equivalent-input-disturbance method for fault-tolerant control of permanent magnet synchronous motor drive system
{"title":"An integral sliding-mode observer-based equivalent-input-disturbance method for fault-tolerant control of permanent magnet synchronous motor drive system","authors":"Gang Huang, Jiajun Li, Yao Yang, Yuhan Zhang","doi":"10.1177/10775463241264590","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of the control performance degradation of a permanent magnet synchronous motor (PMSM) drive system due to permanent magnet demagnetization, which is caused by mechanical vibration and high temperature, this paper presents an equivalent-input-disturbance (EID) fault-tolerant control method based on an integral sliding-mode observer (ISMO). The mathematical model of a PMSM with demagnetization fault in dq-axis coordinate system is first established. Then, the model is transformed into an EID system one. An ISMO is used to estimate the state variables of the EID system and an equivalent-input-demagnetization fault. The estimate of the equivalent-input-demagnetization fault is compensated in a feed-forward manner. Thus, the fault-tolerance control of PMSM demagnetization is achieved. Finally, the stability analyses of the ISMO and the entire EID system are given. The comparative results of a hardware-in-the-loop experiment show that the designed method effectively improves the fault-tolerant control performance of a PMSM drive system with demagnetization fault.","PeriodicalId":17511,"journal":{"name":"Journal of Vibration and Control","volume":"64 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10775463241264590","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problem of the control performance degradation of a permanent magnet synchronous motor (PMSM) drive system due to permanent magnet demagnetization, which is caused by mechanical vibration and high temperature, this paper presents an equivalent-input-disturbance (EID) fault-tolerant control method based on an integral sliding-mode observer (ISMO). The mathematical model of a PMSM with demagnetization fault in dq-axis coordinate system is first established. Then, the model is transformed into an EID system one. An ISMO is used to estimate the state variables of the EID system and an equivalent-input-demagnetization fault. The estimate of the equivalent-input-demagnetization fault is compensated in a feed-forward manner. Thus, the fault-tolerance control of PMSM demagnetization is achieved. Finally, the stability analyses of the ISMO and the entire EID system are given. The comparative results of a hardware-in-the-loop experiment show that the designed method effectively improves the fault-tolerant control performance of a PMSM drive system with demagnetization fault.
期刊介绍:
The Journal of Vibration and Control is a peer-reviewed journal of analytical, computational and experimental studies of vibration phenomena and their control. The scope encompasses all linear and nonlinear vibration phenomena and covers topics such as: vibration and control of structures and machinery, signal analysis, aeroelasticity, neural networks, structural control and acoustics, noise and noise control, waves in solids and fluids and shock waves.