Constraining Spacetime Dimensions in Quantum Gravity by Scale Invariance and Electric-Magnetic Duality

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Takeshi Morita
{"title":"Constraining Spacetime Dimensions in Quantum Gravity by Scale Invariance and Electric-Magnetic Duality","authors":"Takeshi Morita","doi":"10.1093/ptep/ptae112","DOIUrl":null,"url":null,"abstract":"We consider a low energy effective theory of p-branes in a D-dimensional spacetime, and impose two conditions: 1) the theory is scale invariant, and 2) the electric-magnetic dual (D − p − 4)-branes exist and they obey the same type of interactions to the p-branes. (We also assume other natural conditions such as Lorentz invariance but not string theory, supersymmetry, supergravity and so on.) We then ask what p and D are consistent with these conditions. Using simple dimensional analysis, we find that only two solutions are possible: (p, D) = (2, 11) and (p, D) = (2n − 1, 4n + 2), (n = 1, 2, 3, ⋅⋅⋅). The first solution corresponds to M-theory, and the second solutions at n = 1 and n = 2 correspond to self-dual strings in little string theory and D3-branes in type IIB superstring theory, respectively, while the second solutions for n ≥ 3 are unknown but would be higher spin theories. Thus, quantum gravity (massless spin two theory) satisfying our two conditions would only be superstring theories, and they would be strong enough to characterize superstring theories in quantum gravity.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae112","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a low energy effective theory of p-branes in a D-dimensional spacetime, and impose two conditions: 1) the theory is scale invariant, and 2) the electric-magnetic dual (D − p − 4)-branes exist and they obey the same type of interactions to the p-branes. (We also assume other natural conditions such as Lorentz invariance but not string theory, supersymmetry, supergravity and so on.) We then ask what p and D are consistent with these conditions. Using simple dimensional analysis, we find that only two solutions are possible: (p, D) = (2, 11) and (p, D) = (2n − 1, 4n + 2), (n = 1, 2, 3, ⋅⋅⋅). The first solution corresponds to M-theory, and the second solutions at n = 1 and n = 2 correspond to self-dual strings in little string theory and D3-branes in type IIB superstring theory, respectively, while the second solutions for n ≥ 3 are unknown but would be higher spin theories. Thus, quantum gravity (massless spin two theory) satisfying our two conditions would only be superstring theories, and they would be strong enough to characterize superstring theories in quantum gravity.
用尺度不变性和电磁二重性约束量子引力中的时空维度
我们考虑了 D 维时空中 p 粒子的低能有效理论,并提出了两个条件:1) 理论是尺度不变的;2) 存在电磁双(D - p - 4)膜,并且它们与 p 膜服从相同类型的相互作用。(我们还假设了其他自然条件,如洛伦兹不变性,但不包括弦理论、超对称、超引力等)。然后,我们会问什么 p 和 D 符合这些条件。通过简单的维度分析,我们发现只有两种解是可能的:(p,D)=(2,11)和(p,D)=(2n - 1,4n + 2),(n = 1,2,3,⋅⋅⋅)。第一个解对应于 M 理论,n = 1 和 n = 2 时的第二个解分别对应于小弦理论中的自双弦和 IIB 型超弦理论中的 D3 带,而 n ≥ 3 时的第二个解未知,但可能是更高的自旋理论。因此,满足我们这两个条件的量子引力(无质自旋二理论)只能是超弦理论,而且它们足以表征量子引力中的超弦理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信