Extremal Functions for a Trudinger-Moser Inequality with a Sign-Changing Weight

IF 1 3区 数学 Q1 MATHEMATICS
Pengxiu Yu, Xiaobao Zhu
{"title":"Extremal Functions for a Trudinger-Moser Inequality with a Sign-Changing Weight","authors":"Pengxiu Yu, Xiaobao Zhu","doi":"10.1007/s11118-024-10159-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((\\Sigma ,g)\\)</span> be a closed Riemann surface, <span>\\(\\lambda _1(\\Sigma )\\)</span> be the first eigenvalue of the Laplace-Beltrami operator. Assume <span>\\(h:\\Sigma \\rightarrow \\mathbb {R}\\)</span> is some smooth sign-changing function. Using blow-up analysis, we prove that for any <span>\\(\\alpha &lt;\\lambda _1(\\Sigma )\\)</span>, the supremum </p><span>$$\\sup _{\\int _\\Sigma |\\nabla _gu|^2dv_g-\\alpha \\int _\\Sigma u^2dv_g\\le 1,\\,\\int _\\Sigma udv_g=0}\\int _\\Sigma he^{4\\pi u^2}dv_g$$</span><p>is attained by some admissible function <span>\\(u_\\alpha \\)</span>. This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations </p><span>$$\\Delta _gu=8\\pi \\left( \\frac{he^u}{\\int _\\Sigma he^udv_g}-\\frac{1}{|\\Sigma |}\\right) ,$$</span><p>where <i>h</i> is a smooth sign-changing function. Such problems were extensively studied by L. Sun and J. Y. Zhu (Cal. Var. 2021; arXiv: 2012.12840).</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"93 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10159-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \((\Sigma ,g)\) be a closed Riemann surface, \(\lambda _1(\Sigma )\) be the first eigenvalue of the Laplace-Beltrami operator. Assume \(h:\Sigma \rightarrow \mathbb {R}\) is some smooth sign-changing function. Using blow-up analysis, we prove that for any \(\alpha <\lambda _1(\Sigma )\), the supremum

$$\sup _{\int _\Sigma |\nabla _gu|^2dv_g-\alpha \int _\Sigma u^2dv_g\le 1,\,\int _\Sigma udv_g=0}\int _\Sigma he^{4\pi u^2}dv_g$$

is attained by some admissible function \(u_\alpha \). This generalizes earlier results of Yang (J. Differential Equations 2015) and Hou (J. Math. ineq. 2018). Our result resembles existence of solutions to the mean field equations

$$\Delta _gu=8\pi \left( \frac{he^u}{\int _\Sigma he^udv_g}-\frac{1}{|\Sigma |}\right) ,$$

where h is a smooth sign-changing function. Such problems were extensively studied by L. Sun and J. Y. Zhu (Cal. Var. 2021; arXiv: 2012.12840).

带有符号变化权重的特鲁丁格-莫泽尔不等式的极值函数
让((\Sigma ,g)\) 是一个封闭的黎曼曲面,\(\lambda _1(\Sigma )\) 是拉普拉斯-贝尔特拉米算子的第一个特征值。假设(h:\Sigma \rightarrow \mathbb {R})是某个平滑的符号变化函数。通过吹胀分析,我们可以证明对于任何 \(α <;\1(\Sigma )\), the supremum $$\sup _{int _\Sigma |\nabla _gu|^2dv_g\alpha \int _\Sigma u^2dv_g\le 1、\,\int _\Sigma udv_g=0}\int _\Sigma he^{4\pi u^2}dv_g$$ 是通过某个可接受的函数 \(u_\alpha \) 达到的。这概括了 Yang (J. Differential Equations 2015) 和 Hou (J. Math. ineq. 2018) 的早期结果。我们的结果类似于均值场方程的解的存在性 $$\Delta _gu=8\pi \left( \frac{he^u}{\int _\Sigma he^udv_g}-\frac{1}{|\Sigma |}\right) ,$$where h is a smooth sign changing function.L. Sun 和 J. Y. Zhu 对此类问题进行了广泛研究 (Cal. Var. 2021; arXiv: 2012.12840)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信