Rings of differentiable semialgebraic functions

E. Baro, José F. Fernando, J. M. Gamboa
{"title":"Rings of differentiable semialgebraic functions","authors":"E. Baro, José F. Fernando, J. M. Gamboa","doi":"10.1007/s00029-024-00965-z","DOIUrl":null,"url":null,"abstract":"<p>In this work we analyze the main properties of the Zariski and maximal spectra of the ring <span>\\({{\\mathcal {S}}}^r(M)\\)</span> of differentiable semialgebraic functions of class <span>\\({{\\mathcal {C}}}^r\\)</span> on a semialgebraic set <span>\\(M\\subset {{\\mathbb {R}}}^m\\)</span>. Denote <span>\\({{\\mathcal {S}}}^0(M)\\)</span> the ring of semialgebraic functions on <i>M</i> that admit a continuous extension to an open semialgebraic neighborhood of <i>M</i> in <span>\\({\\text {Cl}}(M)\\)</span>. This ring is the real closure of <span>\\({{\\mathcal {S}}}^r(M)\\)</span>. If <i>M</i> is locally compact, the ring <span>\\({{\\mathcal {S}}}^r(M)\\)</span> enjoys a Łojasiewicz’s Nullstellensatz, which becomes a crucial tool. Despite <span>\\({{\\mathcal {S}}}^r(M)\\)</span> is not real closed for <span>\\(r\\ge 1\\)</span>, the Zariski and maximal spectra of this ring are homeomorphic to the corresponding ones of the real closed ring <span>\\({{\\mathcal {S}}}^0(M)\\)</span>. In addition, the quotients of <span>\\({{\\mathcal {S}}}^r(M)\\)</span> by its prime ideals have real closed fields of fractions, so the ring <span>\\({{\\mathcal {S}}}^r(M)\\)</span> is close to be real closed. The missing property is that the sum of two radical ideals needs not to be a radical ideal. The homeomorphism between the spectra of <span>\\({{\\mathcal {S}}}^r(M)\\)</span> and <span>\\({{\\mathcal {S}}}^0(M)\\)</span> guarantee that all the properties of these rings that arise from spectra are the same for both rings. For instance, the ring <span>\\({{\\mathcal {S}}}^r(M)\\)</span> is a Gelfand ring and its Krull dimension is equal to <span>\\(\\dim (M)\\)</span>. We also show similar properties for the ring <span>\\({{\\mathcal {S}}}^{r*}(M)\\)</span> of differentiable bounded semialgebraic functions. In addition, we confront the ring <span>\\({\\mathcal S}^{\\infty }(M)\\)</span> of differentiable semialgebraic functions of class <span>\\({{\\mathcal {C}}}^{\\infty }\\)</span> with the ring <span>\\({{\\mathcal {N}}}(M)\\)</span> of Nash functions on <i>M</i>.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00965-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we analyze the main properties of the Zariski and maximal spectra of the ring \({{\mathcal {S}}}^r(M)\) of differentiable semialgebraic functions of class \({{\mathcal {C}}}^r\) on a semialgebraic set \(M\subset {{\mathbb {R}}}^m\). Denote \({{\mathcal {S}}}^0(M)\) the ring of semialgebraic functions on M that admit a continuous extension to an open semialgebraic neighborhood of M in \({\text {Cl}}(M)\). This ring is the real closure of \({{\mathcal {S}}}^r(M)\). If M is locally compact, the ring \({{\mathcal {S}}}^r(M)\) enjoys a Łojasiewicz’s Nullstellensatz, which becomes a crucial tool. Despite \({{\mathcal {S}}}^r(M)\) is not real closed for \(r\ge 1\), the Zariski and maximal spectra of this ring are homeomorphic to the corresponding ones of the real closed ring \({{\mathcal {S}}}^0(M)\). In addition, the quotients of \({{\mathcal {S}}}^r(M)\) by its prime ideals have real closed fields of fractions, so the ring \({{\mathcal {S}}}^r(M)\) is close to be real closed. The missing property is that the sum of two radical ideals needs not to be a radical ideal. The homeomorphism between the spectra of \({{\mathcal {S}}}^r(M)\) and \({{\mathcal {S}}}^0(M)\) guarantee that all the properties of these rings that arise from spectra are the same for both rings. For instance, the ring \({{\mathcal {S}}}^r(M)\) is a Gelfand ring and its Krull dimension is equal to \(\dim (M)\). We also show similar properties for the ring \({{\mathcal {S}}}^{r*}(M)\) of differentiable bounded semialgebraic functions. In addition, we confront the ring \({\mathcal S}^{\infty }(M)\) of differentiable semialgebraic functions of class \({{\mathcal {C}}}^{\infty }\) with the ring \({{\mathcal {N}}}(M)\) of Nash functions on M.

可微半代数函数环
在这项工作中,我们将分析半代数集合\(Ms/子集{{mathbb {R}}}^m\) 上的类\({{/mathcal {S}}}^r(M)\) 的可微分半代数函数环\({{mathcal {C}}^r\) 的扎里斯基谱和最大谱的主要性质。)表示 \({{\mathcal {S}}^0(M)\) 是 M 上的半代数函数环,这些函数在 \({\text {Cl}}(M)\) 中允许连续扩展到 M 的开放半代数邻域。)这个环是 \({{\mathcal {S}}^r(M)\) 的实闭。)如果 M 是局部紧凑的,那么环 \({{\mathcal {S}}^r(M)\) 就享有罗雅舍维茨的无效定理,这成为一个关键的工具。尽管对于 \(r\ge 1\) 来说 \({{\mathcal {S}}^r(M)\) 不是实封闭的,但这个环的扎里斯基谱和最大谱与实封闭环 \({{\mathcal {S}}^0(M)\) 的相应谱是同构的。)此外,\({{\mathcal {S}}^r(M)\) 的素理想的商具有实闭分数域,所以环 \({{\mathcal {S}}^r(M)\) 接近于实闭。缺少的性质是两个根理想之和不一定是一个根理想。\({{\mathcal {S}}^r(M)\) 和 \({{\mathcal {S}}^0(M)\) 的谱之间的同构保证了这些环的所有由谱产生的性质在两个环上都是一样的。例如,环 \({{math\cal {S}}^r(M)\) 是一个格尔芬德环,它的克拉维等于 \(\dim (M)\)。我们还证明了可微有界半代数函数环 \({{\mathcal {S}}^{r*}(M)\) 的类似性质。此外,我们将类 \({{\mathcal {C}}^{\infty }\) 的可微半代数函数环 \({{\mathcal S}^{\infty }(M)\) 与 M 上的纳什函数环 \({{\mathcal {N}}(M)\) 对立起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信