{"title":"The hydrostatic limit of the Beris-Edwards system in dimension two","authors":"Xingyu Li, Marius Paicu, Arghir Zarnescu","doi":"10.4310/cms.2024.v22.n6.a11","DOIUrl":null,"url":null,"abstract":"We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"28 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the scaled anisotropic co-rotational Beris-Edwards system modeling the hydrodynamic motion of nematic liquid crystals in dimension two. We prove the global well-posedness with small analytic data in a thin strip domain. Moreover, we justify the limit to a system involving the hydrostatic Navier-Stokes system with analytic data and prove the convergence.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.