IMEX variable step-size Runge-Kutta methods for parabolic integro-differential equations with nonsmooth initial data

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Wansheng Wang, Mengli Mao, Zifeng Li
{"title":"IMEX variable step-size Runge-Kutta methods for parabolic integro-differential equations with nonsmooth initial data","authors":"Wansheng Wang, Mengli Mao, Zifeng Li","doi":"10.4310/cms.2024.v22.n6.a6","DOIUrl":null,"url":null,"abstract":"We develop a class of implicit-explicit (IMEX) Runge-Kutta (RK) methods for solving parabolic integro-differential equations (PIDEs) with nonsmooth initial data, which describe several option pricing models in mathematical finance. Different from the usual IMEX RK methods, the proposed methods approximate the integral term explicitly by using an extrapolation operator based on the stage-values of RK methods, and we call them as IMEX stage-based interpolation RK (SBIRK) methods. It is shown that there exist arbitrarily high order IMEX SBIRK methods which are stable for abstract PIDEs under suitable time step restrictions. The consistency error and the global error bounds for this class of IMEX Runge-Kutta methods are derived for abstract PIDEs with nonsmooth initial data. The related higher time regularity analysis of the exact solution and stability estimates for IMEX SBIRK methods play key roles in deriving these error bounds. Numerical experiments for European options under jump-diffusion models and stochastic volatility model with jump verify and complement our theoretical results.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"130 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a class of implicit-explicit (IMEX) Runge-Kutta (RK) methods for solving parabolic integro-differential equations (PIDEs) with nonsmooth initial data, which describe several option pricing models in mathematical finance. Different from the usual IMEX RK methods, the proposed methods approximate the integral term explicitly by using an extrapolation operator based on the stage-values of RK methods, and we call them as IMEX stage-based interpolation RK (SBIRK) methods. It is shown that there exist arbitrarily high order IMEX SBIRK methods which are stable for abstract PIDEs under suitable time step restrictions. The consistency error and the global error bounds for this class of IMEX Runge-Kutta methods are derived for abstract PIDEs with nonsmooth initial data. The related higher time regularity analysis of the exact solution and stability estimates for IMEX SBIRK methods play key roles in deriving these error bounds. Numerical experiments for European options under jump-diffusion models and stochastic volatility model with jump verify and complement our theoretical results.
具有非光滑初始数据的抛物整微分方程的 IMEX 可变步长 Runge-Kutta 方法
我们开发了一类隐式显式(IMEX)Runge-Kutta(RK)方法,用于求解具有非光滑初始数据的抛物线整微分方程(PIDE),该方程描述了数学金融中的若干期权定价模型。与通常的 IMEX RK 方法不同,所提出的方法通过使用基于 RK 方法阶段值的外推算子来显式逼近积分项,我们称之为基于阶段值的 IMEX 插值 RK(SBIRK)方法。研究表明,存在任意高阶的 IMEX SBIRK 方法,这些方法在合适的时间步长限制下对抽象 PIDE 是稳定的。对于具有非光滑初始数据的抽象 PIDE,推导出了该类 IMEX Runge-Kutta 方法的一致性误差和全局误差边界。精确解的相关高时间正则性分析和 IMEX SBIRK 方法的稳定性估计在推导这些误差边界时发挥了关键作用。在跳跃-扩散模型和带有跳跃的随机波动模型下对欧式期权进行的数值实验验证并补充了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信