{"title":"Stability for the 2D Micropolar equations with partial dissipation near Couette flow","authors":"Xueting Jin, Quansen Jiu","doi":"10.4310/cms.2024.v22.n6.a4","DOIUrl":null,"url":null,"abstract":"In this paper, we will apply the Fourier multiplier method to explore the stability for the 2D micropolar equations with partial dissipation near Couette flow. The difficulty will be encountered due to the facts that one order derivative of the microtation appears on the right term of velocity equations and that the velocity equations only have vertical dissipation. To overcome the difficulty, we will make use of a Fourier multiplier to grasp the enhanced dissipation created by the special structure $y\\partial_x-\\nu\\partial_{y}^2$ and obtain some new and higher-order estimates of the solution in an elegant way. Also, a time-dependent elliptic operator $\\Lambda_t^b$ which commutes with linear part of the equations will be used to make our proof more clear.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n6.a4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we will apply the Fourier multiplier method to explore the stability for the 2D micropolar equations with partial dissipation near Couette flow. The difficulty will be encountered due to the facts that one order derivative of the microtation appears on the right term of velocity equations and that the velocity equations only have vertical dissipation. To overcome the difficulty, we will make use of a Fourier multiplier to grasp the enhanced dissipation created by the special structure $y\partial_x-\nu\partial_{y}^2$ and obtain some new and higher-order estimates of the solution in an elegant way. Also, a time-dependent elliptic operator $\Lambda_t^b$ which commutes with linear part of the equations will be used to make our proof more clear.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.