Monotonicity in Half-spaces for p-Laplace Problems with a Sublinear Nonlinearity

IF 1 3区 数学 Q1 MATHEMATICS
Phuong Le
{"title":"Monotonicity in Half-spaces for p-Laplace Problems with a Sublinear Nonlinearity","authors":"Phuong Le","doi":"10.1007/s11118-024-10157-1","DOIUrl":null,"url":null,"abstract":"<p>We prove the monotonicity of positive solutions to the equation <span>\\(-\\Delta _p u = f(u)\\)</span> in <span>\\(\\mathbb {R}^N_+\\)</span> with zero Dirichlet boundary condition, where <span>\\(1&lt;p&lt;2\\)</span> and <span>\\(f:[0,+\\infty )\\rightarrow \\mathbb {R}\\)</span> is a continuous function which is positive and locally Lipschitz continuous in <span>\\((0,+\\infty )\\)</span> and <span>\\(\\liminf _{t\\rightarrow 0^+}\\frac{f(t)}{t^{p-1}}&gt;0\\)</span>. Furthermore, we allow <i>f</i> to be sign-changing in the case <span>\\(\\frac{2N+2}{N+2}&lt;p&lt;2\\)</span>. The celebrated moving plane method will be used in the proofs of our results.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10157-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the monotonicity of positive solutions to the equation \(-\Delta _p u = f(u)\) in \(\mathbb {R}^N_+\) with zero Dirichlet boundary condition, where \(1<p<2\) and \(f:[0,+\infty )\rightarrow \mathbb {R}\) is a continuous function which is positive and locally Lipschitz continuous in \((0,+\infty )\) and \(\liminf _{t\rightarrow 0^+}\frac{f(t)}{t^{p-1}}>0\). Furthermore, we allow f to be sign-changing in the case \(\frac{2N+2}{N+2}<p<2\). The celebrated moving plane method will be used in the proofs of our results.

具有亚线性非线性的 p-Laplace 问题的半空间单调性
我们证明了方程 \(-\Delta _p u = f(u)\)的正解的单调性,其中 \(1<p<2\) 和 \(f. [0,+\infty )\rightarrow \mathbb {R}^N_+\) 是在((0,+\infty ))中正且局部 Lipschitz 连续的连续函数:((0,+\infty)\rightarrow\mathbb{R}\)是一个连续函数,在\((0,+\infty)\)和\(\liminf _{t\rightarrow 0^+}\frac{f(t)}{t^{p-1}}>0\)中是正的和局部利普希兹连续的。此外,在 \(\frac{2N+2}{N+2}<p<2\) 的情况下,我们允许 f 是符号变化的。我们将用著名的移动平面法来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信