{"title":"Hidden mechanism of dynamic large-eddy simulation models","authors":"Xiaohan Hu, Keshav Vedula, George Ilhwan Park","doi":"10.1103/physrevfluids.9.074607","DOIUrl":null,"url":null,"abstract":"The dynamic model is one of the most successful inventions in subgrid-scale (SGS) modeling as it alleviates many drawbacks of the static coefficient SGS stress models. The model coefficient is often calculated dynamically through the minimization of the Germano-identity error (GIE). However, the driving mechanism behind the dynamic model's success is still not well understood. In wall-bounded flows, we postulate that the principal directions of the resolved rate-of-strain tensor play an important role in the dynamic models. Specifically, we find that minimization of the GIE along only the three principal directions (or less), in lieu of the nine components in its original formulation, produces equally comparable results as the original model when examined in canonical turbulent channel flows, a three-dimensional turbulent boundary layer, and a separating flow over periodic hills. This suggests that not all components of the Germano identity are equally important for the success of the dynamic model, and that there might be dynamically more important directions for modeling the subgrid dynamics.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"38 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.074607","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic model is one of the most successful inventions in subgrid-scale (SGS) modeling as it alleviates many drawbacks of the static coefficient SGS stress models. The model coefficient is often calculated dynamically through the minimization of the Germano-identity error (GIE). However, the driving mechanism behind the dynamic model's success is still not well understood. In wall-bounded flows, we postulate that the principal directions of the resolved rate-of-strain tensor play an important role in the dynamic models. Specifically, we find that minimization of the GIE along only the three principal directions (or less), in lieu of the nine components in its original formulation, produces equally comparable results as the original model when examined in canonical turbulent channel flows, a three-dimensional turbulent boundary layer, and a separating flow over periodic hills. This suggests that not all components of the Germano identity are equally important for the success of the dynamic model, and that there might be dynamically more important directions for modeling the subgrid dynamics.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.