{"title":"General classes of bivariate distributions for modeling data with common observations","authors":"Na Young Yoo, Ji Hwan Cha","doi":"10.1007/s00362-024-01589-3","DOIUrl":null,"url":null,"abstract":"<p>In analyzing bivariate data sets, data with common observations are frequently encountered and, in this case, existing absolutely continuous bivariate distributions are not applicable. Only a few models, such as the bivariate distribution proposed by Marshall and Olkin (J Am Stat Assoc 62(317):30–44, 1967), have been developed to model such data sets and the choice of models to fit data sets having common observations is very limited. In this paper, three general classes of bivariate distributions for modeling data with common observations are developed. To develop the bivariate distributions, we employ a probability model in reliability. Considering a system with two components, it is assumed that, when the first failure of the components occurs, with some probability, it immediately causes the failure of the remaining component, and, with complementary probability, the residual lifetime of the remaining component is shortened according to some stochastic order. It will be shown that, by specifying the underlying distributions contained in the joint distribution, numerous families of bivariate distributions can be generated. Therefore, this work provides substantially increased flexibility in modeling data sets with common observations. The developed models are fitted to two real-life data sets and it is shown that these models outperform the existing models in terms of fitting performance and their performances are satisfactory.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"43 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01589-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
In analyzing bivariate data sets, data with common observations are frequently encountered and, in this case, existing absolutely continuous bivariate distributions are not applicable. Only a few models, such as the bivariate distribution proposed by Marshall and Olkin (J Am Stat Assoc 62(317):30–44, 1967), have been developed to model such data sets and the choice of models to fit data sets having common observations is very limited. In this paper, three general classes of bivariate distributions for modeling data with common observations are developed. To develop the bivariate distributions, we employ a probability model in reliability. Considering a system with two components, it is assumed that, when the first failure of the components occurs, with some probability, it immediately causes the failure of the remaining component, and, with complementary probability, the residual lifetime of the remaining component is shortened according to some stochastic order. It will be shown that, by specifying the underlying distributions contained in the joint distribution, numerous families of bivariate distributions can be generated. Therefore, this work provides substantially increased flexibility in modeling data sets with common observations. The developed models are fitted to two real-life data sets and it is shown that these models outperform the existing models in terms of fitting performance and their performances are satisfactory.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.