On the Nonlocal Problem for the Equation with the Hilfer Fractional Derivative

IF 0.8 Q2 MATHEMATICS
R. R. Ashurov, Yu. E. Fayziev, N. M. Tukhtaeva
{"title":"On the Nonlocal Problem for the Equation with the Hilfer Fractional Derivative","authors":"R. R. Ashurov, Yu. E. Fayziev, N. M. Tukhtaeva","doi":"10.1134/s1995080224600729","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the paper, we study the nonlocal problem for a fractional partial differential equation with the Hilfer derivative. The non-local boundary value problem, <span>\\(D^{\\alpha,\\beta}u(t)+Au(t)=f(t)\\)</span> (<span>\\(0&lt;\\alpha&lt;1\\)</span>, <span>\\(0\\leq\\beta\\leq 1\\)</span> and <span>\\(0&lt;t\\leq T\\)</span>), <span>\\(I^{\\delta}u(t)=\\gamma I^{\\delta}u(+0)+\\varphi\\)</span> (<span>\\(\\gamma\\)</span> is a constant), in an arbitrary separable Hilbert space H with the strongly positive self-adjoint operator <span>\\(A\\)</span>, is considered. In addition to the forward problem, the article also explores the inverse problem of determining the right-hand side of the equation. Existence and uniqueness theorems are proved to solve the forward and inverse problems.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224600729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, we study the nonlocal problem for a fractional partial differential equation with the Hilfer derivative. The non-local boundary value problem, \(D^{\alpha,\beta}u(t)+Au(t)=f(t)\) (\(0<\alpha<1\), \(0\leq\beta\leq 1\) and \(0<t\leq T\)), \(I^{\delta}u(t)=\gamma I^{\delta}u(+0)+\varphi\) (\(\gamma\) is a constant), in an arbitrary separable Hilbert space H with the strongly positive self-adjoint operator \(A\), is considered. In addition to the forward problem, the article also explores the inverse problem of determining the right-hand side of the equation. Existence and uniqueness theorems are proved to solve the forward and inverse problems.

论具有希尔费分式衍生物的方程的非局部问题
摘要 本文研究了具有希尔费导数的分数偏微分方程的非局部问题。非局部边界值问题,(D^{\alpha,\beta}u(t)+Au(t)=f(t)\) ((0<\alpha<1\), (0\leq\beta\leq 1\) and\(0<;tleq T\)), \(I^{\delta}u(t)=\gamma I^{\delta}u(+0)+\varphi\) ((\(\gamma\)是一个常数),在一个任意可分离的希尔伯特空间H中与强正自相加算子\(A\)一起被考虑。除了正向问题,文章还探讨了确定方程右边的反向问题。证明了求解正向和反向问题的存在性和唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信