D. K. Durdiev, M. Akylbayev, Zh. Maxumova, A. Iskakova
{"title":"A 2D Convolution Kernel Determination Problem for the Time-Fractional Diffusion Equation","authors":"D. K. Durdiev, M. Akylbayev, Zh. Maxumova, A. Iskakova","doi":"10.1134/s1995080224600857","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this article, two dimensional inverse problem of determining convolution kernel in the fractional diffusion equation with the time-fractional Caputo derivative is studied. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation with Riemann–Liouville derivative is constructed. Using the formulas of asymptotic expansions for the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel function, which was used for studying the inverse problem. The inverse problem is reduced to the equivalent integral equation of the Volterra type. The local existence and global uniqueness results are proven by the aid of fixed point argument in suitable functional classes. Also the stability estimate is obtained.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224600857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, two dimensional inverse problem of determining convolution kernel in the fractional diffusion equation with the time-fractional Caputo derivative is studied. To represent the solution of the direct problem, the fundamental solution of the time-fractional diffusion equation with Riemann–Liouville derivative is constructed. Using the formulas of asymptotic expansions for the fundamental solution and its derivatives, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel function, which was used for studying the inverse problem. The inverse problem is reduced to the equivalent integral equation of the Volterra type. The local existence and global uniqueness results are proven by the aid of fixed point argument in suitable functional classes. Also the stability estimate is obtained.
期刊介绍:
Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.