Evaluating the evolution and inter-individual variability of infant functional module development from 0 to 5 years old

Lingbin Bian, Nizhuan Wang, Yuanning Li, Adeel Razi, Qian Wang, Han Zhang, Dinggang Shen, the UNC/UMN Baby Connectome Project Consortium
{"title":"Evaluating the evolution and inter-individual variability of infant functional module development from 0 to 5 years old","authors":"Lingbin Bian, Nizhuan Wang, Yuanning Li, Adeel Razi, Qian Wang, Han Zhang, Dinggang Shen, the UNC/UMN Baby Connectome Project Consortium","doi":"arxiv-2407.13118","DOIUrl":null,"url":null,"abstract":"The segregation and integration of infant brain networks undergo tremendous\nchanges due to the rapid development of brain function and organization.\nTraditional methods for estimating brain modularity usually rely on\ngroup-averaged functional connectivity (FC), often overlooking individual\nvariability. To address this, we introduce a novel approach utilizing Bayesian\nmodeling to analyze the dynamic development of functional modules in infants\nover time. This method retains inter-individual variability and, in comparison\nto conventional group averaging techniques, more effectively detects modules,\ntaking into account the stationarity of module evolution. Furthermore, we\nexplore gender differences in module development under awake and sleep\nconditions by assessing modular similarities. Our results show that female\ninfants demonstrate more distinct modular structures between these two\nconditions, possibly implying relative quiet and restful sleep compared with\nmale infants.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.13118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The segregation and integration of infant brain networks undergo tremendous changes due to the rapid development of brain function and organization. Traditional methods for estimating brain modularity usually rely on group-averaged functional connectivity (FC), often overlooking individual variability. To address this, we introduce a novel approach utilizing Bayesian modeling to analyze the dynamic development of functional modules in infants over time. This method retains inter-individual variability and, in comparison to conventional group averaging techniques, more effectively detects modules, taking into account the stationarity of module evolution. Furthermore, we explore gender differences in module development under awake and sleep conditions by assessing modular similarities. Our results show that female infants demonstrate more distinct modular structures between these two conditions, possibly implying relative quiet and restful sleep compared with male infants.
评估 0 至 5 岁婴儿功能模块发展的演变和个体间差异
由于大脑功能和组织的快速发展,婴儿大脑网络的分离和整合发生了巨大的变化。传统的大脑模块性估计方法通常依赖于组平均功能连接性(FC),往往忽略了个体的可变性。为了解决这个问题,我们引入了一种新方法,利用贝叶斯模型来分析婴儿功能模块随时间的动态发展。这种方法保留了个体间的可变性,与传统的组平均技术相比,能更有效地检测模块,同时考虑到模块演变的静态性。此外,我们还通过评估模块的相似性,探讨了清醒和睡眠条件下模块发展的性别差异。我们的结果表明,女婴在这两种条件下表现出更明显的模块结构,这可能意味着与男婴相比,女婴的睡眠相对安静和安稳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信