{"title":"A stochastic population model with hierarchic size-structure","authors":"Carles Barril, Àngel Calsina, József Z. Farkas","doi":"10.1007/s12190-024-02187-0","DOIUrl":null,"url":null,"abstract":"<p>We consider a hierarchically structured population in which the amount of resources an individual has access to is affected by individuals that are larger, and that the intake of resources by an individual only affects directly the growth rate of the individual. We formulate a deterministic model, which takes the form of a delay equation for the population birth rate. We also formulate an individual based stochastic model, and study the relationship between the two models. In particular the stationary birth rate of the deterministic model is compared to that of the quasi-stationary birth rate of the stochastic model. Since the quasi-stationary birth rate cannot be obtained explicitly, we derive a formula to approximate it. We show that the stationary birth rate of the deterministic model can be obtained as the large population limit of the quasi-stationary birth rate of the stochastic model. This relation suggests that the deterministic model is a good approximation of the stochastic model when the number of individuals is sufficiently large.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02187-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a hierarchically structured population in which the amount of resources an individual has access to is affected by individuals that are larger, and that the intake of resources by an individual only affects directly the growth rate of the individual. We formulate a deterministic model, which takes the form of a delay equation for the population birth rate. We also formulate an individual based stochastic model, and study the relationship between the two models. In particular the stationary birth rate of the deterministic model is compared to that of the quasi-stationary birth rate of the stochastic model. Since the quasi-stationary birth rate cannot be obtained explicitly, we derive a formula to approximate it. We show that the stationary birth rate of the deterministic model can be obtained as the large population limit of the quasi-stationary birth rate of the stochastic model. This relation suggests that the deterministic model is a good approximation of the stochastic model when the number of individuals is sufficiently large.