Convergence of SMACOF

Jan De Leeuw
{"title":"Convergence of SMACOF","authors":"Jan De Leeuw","doi":"arxiv-2407.12945","DOIUrl":null,"url":null,"abstract":"To study convergence of SMACOF we introduce a modification mSMACOF that\nrotates the configurations from each of the SMACOF iterations to principal\ncomponents. This modification, called mSMACOF, has the same stress values as\nSMACOF in each iteration, but unlike SMACOF it produces a sequence of\nconfigurations that properly converges to a solution. We show that the modified\nalgorithm can be implemented by iterating ordinary SMACOF to convergence, and\nthen rotating the SMACOF solution to principal components. The speed of linear\nconvergence of SMACOF and mSMACOF is the same, and is equal to the largest\neigenvalue of the derivative of the Guttman transform, ignoring the trivial\nunit eigenvalues that result from rotational indeterminacy.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.12945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To study convergence of SMACOF we introduce a modification mSMACOF that rotates the configurations from each of the SMACOF iterations to principal components. This modification, called mSMACOF, has the same stress values as SMACOF in each iteration, but unlike SMACOF it produces a sequence of configurations that properly converges to a solution. We show that the modified algorithm can be implemented by iterating ordinary SMACOF to convergence, and then rotating the SMACOF solution to principal components. The speed of linear convergence of SMACOF and mSMACOF is the same, and is equal to the largest eigenvalue of the derivative of the Guttman transform, ignoring the trivial unit eigenvalues that result from rotational indeterminacy.
SMACOF 的收敛
为了研究 SMACOF 的收敛性,我们引入了一种修正 mSMACOF,它将 SMACOF 每次迭代的配置旋转为主成分。这种修改称为 mSMACOF,每次迭代的应力值与 SMACOF 相同,但与 SMACOF 不同的是,它产生的配置序列能正确收敛到一个解。我们证明,可以通过迭代普通 SMACOF 至收敛,然后旋转 SMACOF 解的主成分来实现改进算法。SMACOF 和 mSMACOF 的线性收敛速度相同,等于古特曼变换导数的最大特征值,忽略了旋转不确定性导致的微小单位特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信